首页> 外文OA文献 >A Bayesian approach for predicting risk of autonomous underwater vehicle loss during their missions
【2h】

A Bayesian approach for predicting risk of autonomous underwater vehicle loss during their missions

机译:一种贝叶斯方法,用于预测任务期间自主水下航行器损失的风险

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

udAutonomous Underwater Vehicles (AUVs) are effective platforms for science research and monitoring, and for military and commercial data-gathering purposes. However, there is an inevitable risk of loss during any mission. Quantifying the risk of loss is complex, due to the combination of vehicle reliability and environmental factors, and cannot be determined through analytical means alone. An alternative approach – formal expert judgment – is a time-consuming process; consequently a method is needed to broaden the applicability of judgments beyond the narrow confines of an elicitation for a defined environment. We propose and explore a solution founded on a Bayesian Belief Network (BBN), where the results of the expert judgment elicitation are taken as the initial prior probability of loss due to failure. The network topology captures the causal effects of the environment separately on the vehicle and on the support platform, and combines these to produce an updated probability of loss due to failure. An extended version of the Kaplan–Meier estimator is then used to update the mission risk profile with travelled distance. Sensitivity analysis of the BBN is presented and a case study of Autosub3 AUV deployment in the Amundsen Sea is discussed in detail.
机译:ud水下机器人(AUV)是用于科学研究和监控以及军事和商业数据收集目的的有效平台。但是,任何任务期间都有不可避免的损失风险。由于车辆可靠性和环境因素的结合,量化损失风险非常复杂,并且无法仅通过分析手段来确定。另一种方法是正式的专家判断,这是一个耗时的过程。因此,需要一种方法来将判断的适用性扩展到超出针对特定环境的启发的狭窄范围。我们提出并探索基于贝叶斯信念网络(BBN)的解决方案,其中专家判断引发的结果被视为由于故障而造成损失的初始先验概率。网络拓扑分别捕获环境在车辆和支持平台上的因果关系,并将这些因果关系组合在一起,以产生因故障而造成损失的更新概率。然后,使用扩展版的Kaplan–Meier估计器来更新行进距离的任务风险状况。介绍了BBN的灵敏度分析,并详细讨论了在阿蒙森海部署Autosub3 AUV的案例研究。

著录项

  • 作者

    Brito Mario; Griffiths Gwyn;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号