首页> 外文学位 >A sampling-based model predictive control approach to motion planning for autonomous underwater vehicles.
【24h】

A sampling-based model predictive control approach to motion planning for autonomous underwater vehicles.

机译:基于采样的模型预测控制方法用于自主水下航行器的运动计划。

获取原文
获取原文并翻译 | 示例

摘要

In recent years there has been a demand from the commercial, research and military industries to complete tedious and hazardous underwater tasks. This has lead to the use of unmanned vehicles, in particular autonomous underwater vehicles (AUVs). To operate in this environment the vehicle must display kinematically and dynamically feasible trajectories. Kinematic feasibility is important to allow for the limited turn radius of an AUV, while dynamic feasibility can take into consideration limited acceleration and braking capabilities due to actuator limitations and vehicle inertia.;Model Predictive Control (MPC) is a method that has the ability to systematically handle multi-input multi-output (MIMO) control problems subject to constraints. It finds the control input by optimizing a cost function that incorporates a model of the system to predict future outputs subject to the constraints. This makes MPC a candidate method for AUV trajectory generation. However, traditional MPC has difficulties in computing control inputs in real time for processes with fast dynamics.;This research applies a novel MPC approach, called Sampling-Based Model Predictive Control (SBMPC), to generate kinematically or dynamically feasible system trajectories for AUVs. The algorithm combines the benefits of sampling-based motion planning with MPC while avoiding some of the major pitfalls facing both traditional sampling-based planning algorithms and traditional MPC, namely large computation times and local minimum problems. SBMPC is based on sampling (i.e., discretizing) the input space at each sample period and implementing a goal-directed optimization method (e.g., A☆) in place of standard nonlinear programming. SBMPC can avoid local minimum, has only two parameters to tune, and has small computational times that allows it to be used online fast systems.;A kinematic model, decoupled dynamic model and full dynamic model are incorporated in SBMPC to generate a kinematic and dynamic feasible 3D path. Simulation results demonstrate the efficacy of SBMPC in guiding an autonomous underwater vehicle from a start position to a goal position in regions populated with various types of obstacles.
机译:近年来,商业,研究和军事工业都要求完成繁琐而危险的水下任务。这导致无人驾驶车辆的使用,特别是自动水下航行器(AUV)的使用。为了在这种环境下运行,车辆必须显示运动学和动态可行的轨迹。运动学上的可行性对于允许AUV的转弯半径受限非常重要,而动态可行性则可以考虑由于执行器限制和车辆惯性而导致的有限的加速和制动能力。模型预测控制(MPC)是一种具有以下能力的方法:系统地处理受约束的多输入多输出(MIMO)控制问题。它通过优化成本函数找到控制输入,该成本函数结合了系统模型以预测受约束的未来输出。这使MPC成为AUV轨迹生成的候选方法。然而,传统的MPC难以为快速动态过程实时计算控制输入。;本研究应用了一种新颖的MPC方法(称为基于采样的模型预测控制(SBMPC))来为AUV生成运动学或动态可行的系统轨迹。该算法将基于采样的运动计划与MPC的优点结合在一起,同时避免了传统的基于采样的计划算法和传统的MPC面临的一些主要陷阱,即计算时间长和局部最小问题。 SBMPC基于在每个采样周期对输入空间进行采样(即离散化)并实施目标导向的优化方法(例如A☆)来代替标准的非线性编程。 SBMPC可以避免局部最小值,仅需调整两个参数,并且计算时间短,因此可用于在线快速系统。SBMPC中集成了运动学模型,解耦动态模型和全动态模型,以产生运动学​​和动态可行的3D路径。仿真结果证明了SBMPC在将水下航行器从起始位置引导到目标位置的各种类型障碍物区域的有效性。

著录项

  • 作者

    Caldwell, Charmane Venda.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Engineering Electronics and Electrical.;Engineering Mechanical.;Engineering Robotics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 112 p.
  • 总页数 112
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:05

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号