Computational Fluid Dynamics is used to investigate the global forces and moments acting on the KVLCC2 hull form under going straight line, drift and pure sway planar motion mechanism tests. Simulated results are compared with experimental results for the unappended hull in shallow waterudand a fully appended hull with a propeller acting at the ship self propulsion point. A body fitted mesh undergoes transverse motion within an overall fixed mesh to capture planar motion mechanism tests. A blade element momentum code is coupled with the RANS solver for the self propulsion case. A workstationudis used for the calculations with mesh sizes up to 2x106 elements. Computational uncertainty is typically 2-3% for side force and yaw moment but greater than 15% for resistance. With this mesh motion strategy manoeuvres can be well represented within a practical computational time scale.
展开▼