首页> 外文OA文献 >Model-based image analysis for forensic shoe print recognition
【2h】

Model-based image analysis for forensic shoe print recognition

机译:基于模型的法医鞋印识别图像分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis is about automated forensic shoe print recognition. Recognizing a shoe printudin an image is an inherently difficult task. Shoe prints vary in their pose, shape andudappearance. They are surrounded and partially occluded by other objects and mayudbe left on a wide range of diverse surfaces. We propose to formulate this task in audmodel-based image analysis framework.udOur framework is based on the Active Basis Model. A shoe print is represented asudhierarchical composition of basis filters. The individual filters encode local informationudabout the geometry and appearance of the shoe print pattern. The hierarchical com-udposition encodes mid- and long-range geometric properties of the object. A statisticaluddistribution is imposed on the parameters of this representation, in order to account forudthe variation in a shoe print‘s geometry and appearance.udOur work extends the Active Basis Model in various ways, in order to make it robustlyudapplicable to the analysis of shoe print images. We propose an algorithm that automat-udically infers an efficient hierarchical dependency structure between the basis filters. Theudlearned hierarchical dependencies are beneficial for our further extensions, while at theudsame time permitting an efficient optimization process. We introduce an occlusion modeludand propose to leverage the hierarchical dependencies to integrate contextual informa-udtion efficiently into the reasoning process about occlusions. Finally, we study the effectudof the basis filter on the discrimination of the object from the background. In this con-udtext, we highlight the role of the hierarchical model structure in terms of combining theudlocally ambiguous filter response into a sophisticated discriminator.udThe main contribution of this work is a model-based image analysis framework whichudrepresents a planar object‘s variation in shape and appearance, it‘s partial occlusion asudwell as background clutter. The model parameters are optimized jointly in an efficientudoptimization scheme. Our extensions to the Active Basis Model lead to an improveduddiscriminative ability and permit coherent occlusions and hierarchical deformations. Theudexperimental results demonstrate a new state of the art performance at the task ofudforensic shoe print recognition.
机译:本论文是关于自动取证鞋印痕的识别。识别鞋印图像是一个固有的难题。鞋印的姿势,形状和外观都不同。它们被其他物体包围并部分遮挡,并且可能被留在各种不同的表面上。我们建议在基于 udmodel的图像分析框架中制定此任务。 ud我们的框架基于Active Basis模型。鞋印表示为基本过滤器的 uhierarchical组成。各个过滤器对鞋印图案的几何形状和外观进行局部编码。层次结构对对象的中,远距离几何特性进行编码。为了统计鞋印的几何形状和外观的变化,对这种表示形式的参数施加统计 ud分布。 ud我们的工作以各种方式扩展了Active Basis模型,以便使其健壮适用于鞋印图像的分析。我们提出了一种算法,可以自动推断基本过滤器之间的有效分层依赖结构。 udlearned的分层依存关系对于我们的进一步扩展是有益的,而 udsame时允许高效的优化过程。我们引入了遮挡模型 ud,并提出了利用层次依存关系将上下文信息 ud高效地集成到有关遮挡的推理过程中的建议。最后,我们研究了基本滤波器对物体与背景的区别的影响。在本文中,我们突出强调了分层模型结构在将 udlocal模棱两可的滤波器响应组合到复杂的鉴别器方面的作用。 ud这项工作的主要贡献是基于模型的图像分析框架, ud代表平面物体在形状和外观上的变化,部分遮挡以及背景杂波。以有效非优化方案共同优化模型参数。我们对活动基础模型的扩展导致了改进的非判别能力,并允许相关的遮挡和层次变形。 实验结果证明了法医鞋印识别任务的最新水平。

著录项

  • 作者

    Kortylewski Adam;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号