首页> 外文OA文献 >Parallel graph algorithms for finding weighted matchings and subgraphs in computational science
【2h】

Parallel graph algorithms for finding weighted matchings and subgraphs in computational science

机译:用于在计算科学中查找加权匹配和子图的并行图算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Graphs constitute one of the most crucial data structures in computational science and engineering. The algorithms operating on these data structures are computational kernels in various data intensive applications; for instance, in social network analysis, in computational biology, and in scientific computing. In order to enhance the computational performance of graph algorithms, techniques of high-performance computing represent the key to run these algorithms on massively parallel architectures. However, graph algorithms typically feature irregular memory access patterns and low arithmetic intensities which present a challenge for the engineering of efficient parallel graph algorithms.ududIn this thesis, a parallel auction-based weighted matching implementation, PAUL, is designed to solve the bipartite weighted graph matching problem on distributed memory clusters. This thesis outlines that the solving of graph matching problems can be significantly accelerated in various data intensive applications such as the graph similarity of protein-protein interaction networks and the permutation of large entries onto the main diagonal of a matrix in numerical linear algebra. ududFurthermore, a dense subgraph problem is identified in parallel numerical linear algebra whose solution considerably improves the convergence and robustness of hybrid linear solvers. Three heuristics are designed and implemented to solve the NP-hard combinatorial problem efficiently; the most promising one is based on evolutionary algorithms. The impact of solving the heuristics is demonstrated in the hybrid linear solver PSPIKE when solving data intensive applications in arterial fluid dynamics and PDE-constrained optimization.ud
机译:图构成了计算科学和工程学中最关键的数据结构之一。在这些数据结构上运行的算法是各种数据密集型应用程序中的计算内核。例如,在社交网络分析,计算生物学和科学计算中。为了提高图算法的计算性能,高性能计算技术代表了在大规模并行体系结构上运行这些算法的关键。然而,图算法通常具有不规则的内存访问模式和较低的算术强度,这对有效的并行图算法的工程提出了挑战。 ud ud在本文中,基于并行拍卖的加权匹配实现PAUL旨在解决该问题。分布式内存集群上的二元加权图匹配问题。本文概述了在各种数据密集型应用程序中,诸如蛋白质-蛋白质相互作用网络的图形相似性以及数字线性代数中矩阵的主对角线上大条目的置换,可以大大加快图匹配问题的解决速度。 ud ud此外,在并行数值线性代数中确定了一个稠密的子图问题,其解决方案大大提高了混合线性求解器的收敛性和鲁棒性。设计和实现了三种启发式方法,可以有效地解决NP-hard组合问题。最有前途的一种是基于进化算法的。在求解数据密集型应用在动脉流体动力学和PDE约束优化中时,混合线性求解器PSPIKE证明了求解启发式方法的影响。 ud

著录项

  • 作者

    Sathe Madan;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号