首页> 外文OA文献 >Nuclear magnetic resonance on a single quantum dot and a quantum dot in a nanowire system: quantum photonics and opto-mechanical coupling
【2h】

Nuclear magnetic resonance on a single quantum dot and a quantum dot in a nanowire system: quantum photonics and opto-mechanical coupling

机译:单个量子点上的核磁共振和纳米线系统中的量子点:量子光子学和光机械耦合

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Self-assembled semiconductor quantum dots (QD) are excellent single photon sources and possible hosts for electron spin qubits, which can be initialized, manipulated and read-out optically. The nuclear spins in nano-structured semiconductors play a central role in quantum applications. The nuclear spins represent a useful resource for generating local magnetic fields but nuclear spin noise represents a major source of dephasing for spin qubits. Controlling the nuclear spins enhances the resource while suppressing the noise. Nuclear magnetic resonance (NMR) techniques are challenging: the group-III and group-V isotopes have large spins with widely different gyromagnetic-ratios; in strained material there are large atom-dependent quadrupole-shifts; nano-scale NMR is hard to detect. We report NMR on 100,000 nuclear spins of a quantum dot using chirped radio-frequency pulses. Followingudpolarization, we demonstrate a reversal of the nuclear spin. We can flip the nuclear spin back-and-forth a hundred times. We demonstrate that chirped-NMR is a powerful way of determining the chemical composition, the initial nuclear spin temperatures and quadrupole frequency distributionsudfor all the main isotopes. The key observation is a plateau in the NMR signal as a function of sweep-rate: we achieve inversion at the first quantum transition for all isotopes simultaneously. These experiments represent a generic technique for manipulating nano-scale inhomogeneous nuclear spin ensembles and open the way to probe the coherence of such mesoscopic systems. For most solid state electron spin qubits in GaAs one unmastered source of decoherence is the hyperfine interaction with the nuclear spins, whose coherence is inevitably limited by nuclear dipole-dipole interactions. Resent work on uncharged QDs showed that in strained nano-structures quadrupolar effects suppress dipole-dipole interactions and prolong nuclear spin coherence times up to a few ms. It has been argued this would also lead to enhanced electron spin coherence times. However, the effect of actually loading the QD with an electron on nuclear spin coherence has so far only been investigated theoretically. Here we measure the nuclear spin ensemble coherence for a single InGaAs quantum dot embedded in a charge tunable device. For an empty dot we confirm Hahn echo coherence times T2 of a few ms. In contrast, on charging with a single electron T2 drops by more than a factor 100 down to a few tens of µs. The reduction of coherence is explained by electron mediated coupling between nuclear spins due to the hyperfine interaction, an example of RKKY-type interaction. Charging the QD with two electrons (a singlet state) recovers the T2 times of the empty dot, ruling out any systematic errors resulting from the switching process itself.udududQuantum dots embedded within nanowires represent one of the most promising technologies for applications in quantum photonics. While the top-down fabrication of such structures remains a technological challenge, their bottom up fabrication through self-assembly is a potentially more powerful strategy. However, present approaches often yield quantum dots with large optical linewidths, making reproducibility of their physical properties difficult. We present a versatile quantum-dot-in-nanowire system which reproducibly self-assembles in core-shell GaAs/AlGaAs nanowires. The quantum dots form at the apex of a GaAs/AlGaAs interface, are highly stable, and can be positioned with nanometer precision relative to the nanowire centre. Unusually, their emission is blue-shifted relative to the lowest energy continuum states of the GaAs core. Large-scale electronic structure calculations show that the origin of the optical transitions lies in quantum confinement due to Al-rich barriers. By emitting in the red and self-assembling on silicon substrates, these quantum dots could therefore become building blocks for solid-state lighting devices and third-generation solar cells. We show that optically-active quantum dots (QDs)embedded in MBE-grown GaAs/AlGaAs core-shell nanowires (NWs) are coupled to the NW mechanical motion. Oscillations of the NW modulate the QD emission energy in a broad range exceeding 14 meV. Furthermore, this opto-mechanical interaction enables the dynamical tuning of two neighbouring QDs into resonance, possibly allowing for emitter-emitter coupling. Both the QDs and the coupling mechanism - material strain - are intrinsic to the NW structure and do not depend on any functionalization or external field. Such systems open up the prospect of using QDs to probe and control the mechanical state of a NW, or conversely of making a quantum non-demolition readout of a QD state through a position measurement.
机译:自组装半导体量子点(QD)是出色的单光子源,并且是电子自旋量子位的可能宿主,可以对它们进行光学初始化,操纵和读出。纳米结构半导体中的核自旋在量子应用中起着核心作用。核自旋代表了用于产生局部磁场的有用资源,但核自旋噪声代表了自旋量子比特移相的主要来源。控制核自旋可在抑制噪声的同时增强资源。核磁共振(NMR)技术具有挑战性:III族和V族同位素具有较大的自旋,其旋磁比大不相同。在应变材料中,存在依赖于原子的大四极位移;纳米级NMR很难检测。我们报告了使用chi射频脉冲的量子点的100,000个核自旋的NMR。在非极化之后,我们证明了核自旋的逆转。我们可以来回翻转核旋转一百次。我们证明了chi核磁共振是确定所有主要同位素的化学组成,初始核自旋温度和四极子频率分布 ud的有力方法。关键观察结果是NMR信号的平稳度是扫描速率的函数:我们同时在所有同位素的第一个量子跃迁处实现了反演。这些实验代表了一种用于处理纳米级不均匀核自旋集合体的通用技术,并为探查此类介观系统的相干性开辟了道路。对于砷化镓中的大多数固态电子自旋量子位,非相干性的一个非受控来源是与核自旋的超精细相互作用,其相干性不可避免地受到核偶极-偶极相互作用的限制。对不带电荷的量子点的最新研究表明,在应变纳米结构中,四极效应会抑制偶极-偶极相互作用,并将核自旋相干时间延长至几毫秒。有人认为这也将导致电子自旋相干时间的增加。但是,到目前为止,仅在理论上研究了将电子实际装载到QD上对核自旋相干性的影响。在这里,我们测量嵌入在电荷可调器件中的单个InGaAs量子点的核自旋集合相干性。对于一个空点,我们确认几毫秒的Hahn回波相干时间T2。相反,在单个电子充电时,T2下降了100倍以上,下降到几十微秒。相干性的降低可以解释为由于超精细相互作用(RKKY型相互作用的一个例子),核自旋之间的电子介导的偶联。用两个电子(单重态)对QD充电可恢复空点的T2倍,排除了因开关过程本身而引起的任何系统误差。 ud ud ud嵌入纳米线的量子点代表了最有希望的技术之一在量子光子学中的应用。尽管这种结构的自上而下的制造仍然是一项技术挑战,但是通过自组装进行自下而上的制造是一种可能更强大的策略。然而,目前的方法经常产生具有大的光学线宽的量子点,从而使其物理性质的可再现性变得困难。我们提出了一种通用的纳米点量子点系统,该系统可重复地自组装在核-壳GaAs / AlGaAs纳米线中。量子点形成在GaAs / AlGaAs界面的顶点,具有很高的稳定性,并且可以相对于纳米线中心以纳米精度进行定位。相对于GaAs核心的最低能量连续态,它们的发射异常地蓝移。大规模的电子结构计算表明,由于富含Al的势垒,光学跃迁的起源在于量子限制。通过发射红色光并在硅基板上自组装,这些量子点因此可以成为固态照明设备和第三代太阳能电池的基础。我们显示嵌入在MBE生长的GaAs / AlGaAs核壳纳米线(NWs)中的光学活性量子点(QD)耦合到NW机械运动。 NW的振荡在超过14 meV的宽范围内调制QD发射能量。此外,这种光机械相互作用使两个相邻QD可以动态调谐到谐振状态,从而可能实现发射极-发射极耦合。量子点和耦合机制-材料应变-是NW结构固有的,并且不依赖于任何功能化或外部场。这样的系统开辟了使用QD探测和控制NW的机械状态,或者相反地通过位置测量对QD状态进行量子非拆卸读出的前景。

著录项

  • 作者

    Wüst Gunter Johannes;

  • 作者单位
  • 年度 2015
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号