首页> 外文OA文献 >Chloroplast Genome Diversity in the Phototrophic Euglenoids, with Emphasis on Genome Structure, Synteny and Intron Evolution
【2h】

Chloroplast Genome Diversity in the Phototrophic Euglenoids, with Emphasis on Genome Structure, Synteny and Intron Evolution

机译:光养细胞中叶绿体基因组多样性,重点是基因组结构,同源性和内含子进化

摘要

To shed light on chloroplast genome evolution in the phototrophic euglenoids the cpGenomes of Euglena mutabilis (SAG 1224-9b), Trachelomonas grandis (SAG 204.80) and Eutreptiella pomquetensis (CCMP 1491) were isolated, sequenced and annotated. The chloroplastgenomes were investigated intensively and compared to other cpGenomes of phototrophic euglenoids, with special focus on genome size and structure, number and localization ofrRNA operons as well as introns. As a cause for genome size differences three major reasonshave been identified. First, the intergenic space between the cpGenomes of different taxavaried greatly, even between closely related species. Second, the rRNA operon numbersbetween different taxa were not uniform. Third, the different intron numbers and intron typesbetween different taxa led to the main reason for size differences in euglenoids cpGenomes.Comprehensive trends of intron number and intron type have been detected in closely as wellas distantly related euglenoids. These trends can be used to explain intron density and quantityas well as high or low similarities in the evolution of introns in all phototrophic euglenoids.The expansion and evolution of psbC introns can partly be elucidated by assumed horizontalintron transfers in the chloroplast of euglenoids after the split from Eutreptiales andEuglenales.Findings concerning the emergence and evolution of group III introns supported thehypothesis that group III introns are degenerated group II introns. Surprisingly, thecpGenomes of the basally branching Eutreptiales are free of group III introns, although theresults indicated that their evolution began in Eutreptiales as intermediate stages of group IIand III introns (mini group II introns).Furthermore, a new phylogenomic analysis of phototrophic euglenoids was performed andcompared to recently published phylogenetic analyses. As a new approach genome-levelcharacters from all known cpGenomes of euglenoids have been used as a tool to complementthe phylogenomic analysis. Metacharacter analyses yielded gene arrangement, clusterarrangement and rRNA operons as viable metacharacters with partly important modificationsbetween the taxa. Significant cluster rearrangement was identified in several clades thatmatched the phylogenetic reconstruction. Using the rRNA operon as a metacharacter revealeda trend of loss of one rRNA copy following the diversification of Euglenales. Basallybranching Eutreptiales contained two copies, which is identical to the structure in the surmised chloroplast donor Pyramimonas parkeae. Only for both Euglena gracilis speciesand Strombomonas acuminata an independent acquirement of further rRNA operons wasrecognizable.The cpGenome of Eutreptiella pomquetensis showed the same quadripartite cpGenomestructure as Pyramimonas parkeae, corroborating the close relationship between these twotaxa. The present work provides a sound basis for further examinations of chloroplast genomeanalyses to get a more thorough understanding of intron evolution within the phototrophiceuglenoids. Likewise it represents a precursor for future studies concerning genome-levelfeatures in phototrophic euglenoids.
机译:为了阐明光养性类胚珠中的叶绿体基因组进化,分离,测序并注释了Euglena mutabilis(SAG 1224-9b),Trachelomonas grandis(SAG 204.80)和Eutreptiella pomquetensis(CCMP 1491)的cpGenomes。叶绿体基因组进行了深入研究,并与其他光养性类胚珠的cpGenomes进行了比较,特别关注基因组大小和结构,rRNA操纵子以及内含子的数量和定位。作为基因组大小差异的原因,已经确定了三个主要原因。首先,即使在密切相关的物种之间,不同分类的cpGenome之间的基因间隔也很大。其次,不同分类群之间的rRNA操纵子数不一致。第三,不同类群之间内含子数目和内含子类型的不同是造成类胚珠cpGenomes大小差异的主要原因。在远近相关的类胚珠中,已发现内含子数量和内含子类型的综合趋势。这些趋势可以用来解释内含子密度和数量以及所有光养性类胚珠的内含子进化的高低相似性.psbC内含子的扩展和进化可以部分地通过假定分裂后洋棉的叶绿体中水平内含子转移来阐明关于III族内含子的出现和进化的发现支持了III族内含子是退化的II族内含子的假说。出乎意料的是,尽管基本结果表明它的进化始于作为II和III族内含子(II族迷你内含子)的中间阶段,但基本分支的Eutreptiales的cp基因组中没有III族内含子。与最近发表的系统发育分析相比。作为一种新的方法,来自所有已知cp的基因组水平的真核生物基因组已被用作补充系统生物学分析的工具。元字符分析产生的基因排列,簇排列和rRNA操纵子是可行的元字符,在类群之间具有部分重要的修饰。在与系统发育重建相匹配的几个进化枝中鉴定出显着的簇重排。使用rRNA操纵子作为元字符揭示了Euglenales多样化后一种rRNA拷贝丢失的趋势。基底分支植物含有两个拷贝,与推测的叶绿体供体Pyramimonas parkeae中的结构相同。仅对于Euglena gracilis物种和Strombomonas acuminata而言,都可以独立获得进一步的rRNA操纵子。蓬皮大肠埃希氏菌的cp基因组显示出与Parkere Pyramimonas parkeae相同的四聚体cp基因组结构,证实了这两个类群之间的密切关系。目前的工作为进一步检查叶绿体基因组分析提供了良好的基础,以便更全面地了解光养丝囊类中的内含子进化。同样,它代表了有关光养性类胚珠的基因组水平特征的未来研究的先驱。

著录项

  • 作者

    Dabbagh Nadja;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号