首页> 外文OA文献 >On the possible mathematical connections between the Hartle-Hawking no boundary proposal concerning the Randall-Sundrum cosmological scenario, Hartle-Hawking wave-function in the mini-superspace sector of physical superstring theory, p-adic Hartle-Hawking wave function and some sectors of Number Theory.
【2h】

On the possible mathematical connections between the Hartle-Hawking no boundary proposal concerning the Randall-Sundrum cosmological scenario, Hartle-Hawking wave-function in the mini-superspace sector of physical superstring theory, p-adic Hartle-Hawking wave function and some sectors of Number Theory.

机译:数学场景,物理超弦理论的迷你超空间中的Hartle-Hawking波函数,p-adic Hartle-Hawking波函数数论。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we have described the Hartle-Hawking no boundary proposal concerning the Randall-Sundrum cosmological scenario, nonlocal braneworld action in the two-brane Randall-Sundrum model, Hartle-Hawking wave-function in the mini-superspace sector of physical superstring theory, p-adic models in the Hartle-Hawking proposal and p-adic and adelic wave functions of the universe. Furthermore, we have showed some possible mathematical connections between some equations of these arguments and, in conclusion, we have also described some mathematical connections between some equations of arguments above mentioned and some equations concerning the Riemann zeta function, the Ramanujan’s modular equations and the Palumbo-Nardelli model. In the section 1, we have described the Hartle-Hawking “no boundary” proposal applied to Randall-Sundrum cosmological scenario. In the section 2, we have described nonlocal braneworld action in the two-brane Randall-Sundrum model. In the section 3, we have described the compactifications of type IIB strings on a Calabi-Yau three-fold and Hartle-Hawking wave-function in the mini-superspace sector of physical superstring theory. In the section 4, we have described the p-Adic models in the Hartle-Hawking proposal. In the section 5, we have described the p-Adic and Adelic wave functions of the Universe. In the section 6, we have described some equations concerning the Riemann zeta function, specifically, the Goldston-Montgomery Theorem, the study of the behaviour of the argument of the Riemann function with the condition that s lies on the critical line s=1/2+it, where t is real, the P-N Model (Palumbo-Nardelli model) and the Ramanujan identities. In conclusion, in the section 7, we have described some possible mathematical connections between some equations of arguments above discussed and some equations concerning the Riemann zeta-function, the Ramanujan’s modular equations and the Palumbo-Nardelli model.
机译:在本文中,我们描述了有关Randall-Sundrum宇宙学场景的Hartle-Hawking无边界方案,两臂Randall-Sundrum模型中的非局部braneworld动作,物理超弦理论的微型超空间领域中的Hartle-Hawking波函数,Hartle-Hawking提案中的p-adic模型以及宇宙的p-adic和adelic波函数。此外,我们已经展示了这些自变量的某些方程之间的一些可能的数学联系,最后,我们还描述了上述自变量的某些方程与有关Riemann zeta函数,Ramanujan的模块化方程和Palumbo的某些方程之间的某些数学联系。 -纳德利模型。在第1节中,我们描述了适用于Randall-Sundrum宇宙学场景的Hartle-Hawking“无边界”建议。在第2节中,我们描述了两脑Randall-Sundrum模型中的非局部braneworld动作。在第3节中,我们描述了物理超弦理论的微型超空间领域中Calabi-Yau三重和Hartle-Hawking波函数上IIB型弦的压缩。在第4节中,我们描述了Hartle-Hawking提案中的p-Adic模型。在第5节中,我们描述了宇宙的p-Adic和Adelic波函数。在第6节中,我们描述了一些有关Riemann zeta函数的方程,特别是Goldston-Montgomery定理,研究了s处于临界线s = 1 /上的条件下Riemann函数自变量的行为。 2 + it,其中t为实数,PN模型(Palumbo-Nardelli模型)和Ramanujan身份。最后,在第7节中,我们描述了上面讨论的一些论点方程与一些有关Riemann zeta函数,Ramanujan的模块化方程和Palumbo-Nardelli模型的方程之间的可能数学联系。

著录项

  • 作者

    Nardelli Michele;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号