首页> 外文OA文献 >On the physical interpretation of the Riemann zeta function, the Rigid Surface Operators in Gauge Theory, the adeles and ideles groups applied to various formulae regarding the Riemann zeta function and the Selberg trace formula, p-adic strings, zeta strings and p-adic cosmology and mathematical connections with some sectors of String Theory and Number Theory.
【2h】

On the physical interpretation of the Riemann zeta function, the Rigid Surface Operators in Gauge Theory, the adeles and ideles groups applied to various formulae regarding the Riemann zeta function and the Selberg trace formula, p-adic strings, zeta strings and p-adic cosmology and mathematical connections with some sectors of String Theory and Number Theory.

机译:关于Riemann zeta函数的物理解释,Gauge中的刚体面算子与弦理论和数论的某些部门的数学联系。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper is a review of some interesting results that has been obtained in the study of the physical interpretation of the Riemann zeta function as a FZZT Brane Partition Function associated with a matrix/gravity correspondence and some aspects of the Rigid Surface Operators in Gauge Theory. Furthermore, we describe the mathematical connections with some sectors of String Theory (p-adic and adelic strings, p-adic cosmology) and Number Theory. In the Section 1 we have described various mathematical aspects of the Riemann Hypothesis, matrix/gravity correspondence and master matrix for FZZT brane partition functions. In the Section 2, we have described some mathematical aspects of the rigid surface operators in gauge theory and some mathematical connections with various sectors of Number Theory, principally with the Ramanujan’s modular equations (thence, prime numbers, prime natural numbers, Fibonacci’s numbers, partitions of numbers, Euler’s functions, etc…) and various numbers and equations related to the Lie Groups. In the Section 3, we have described some very recent mathematical results concerning the adeles and ideles groups applied to various formulae regarding the Riemann zeta function and the Selberg trace formula (connected with the Selberg zeta function), hence, we have obtained some new connections applying these results to the adelic strings and zeta strings. In the Section 4 we have described some equations concerning p-adic strings, p-adic and adelic zeta functions, zeta strings and p-adic cosmology (with regard the p-adic cosmology, some equations concerning a general class of cosmological models driven by a nonlocal scalar field inspired by string field theories). In conclusion, in the Section 5, we have showed various and interesting mathematical connections between some equations concerning the Section 1, 3 and 4.
机译:本文回顾了一些有趣的结果,这些结果是在对黎曼zeta函数作为与矩阵/重力对应关系相关的FZZT Brane分区函数的物理解释以及规范理论中刚性表面算子的某些方面的研究中获得的。此外,我们描述了与弦理论(p-adic和adelic弦,p-adic宇宙论)和数论的某些领域的数学联系。在第1节中,我们描述了黎曼假说的各种数学方面,矩阵/重力对应关系和FZZT分支分配函数的主矩阵。在第2节中,我们描述了规范理论中刚性表面算子的一些数学方面,以及与数论各个领域的一些数学联系,主要是与拉曼努詹的模块方程式(因数,素数,素自然数,斐波那契数,分区数,欧拉函数等)以及与李群相关的各种数字和方程。在第3节中,我们已经描述了有关适用于有关Riemann zeta函数和Selberg跟踪公式(与Selberg zeta函数有关)的各种公式的adeles和ideles组的一些最新数学结果,因此,我们获得了一些新的联系。将这些结果应用于adelic字符串和zeta字符串。在第4节中,我们描述了一些有关p-adic弦,p-adic和adelic zeta函数,zeta弦和p-adic宇宙学的方程式(关于p-adic宇宙学,一些方程式涉及由驱动的一般宇宙模型)受字符串字段理论启发的非局部标量字段)。总之,在第5节中,我们已经显示了有关第1、3和4节的一些方程之间的各种有趣的数学联系。

著录项

  • 作者

    Nardelli Michele;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号