首页> 外文OA文献 >Optimal location of single and multiple obnoxious facilities: Algorithms for the maximin criterion under different norms.
【2h】

Optimal location of single and multiple obnoxious facilities: Algorithms for the maximin criterion under different norms.

机译:单个和多个令人讨厌的设施的最佳位置:不同规范下的最大化标准的算法。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis investigates the computational problem of locating obnoxious (undesirable) facilities in a way that minimizes their effect on a given set of clients (e.g. population centres). Supposing that the undesirable effects of such a facility on a given client are a decreasing function of the distance between them the objective is to locate these facilities as far away as possible from the given set of clients, subject to constraints that prevent location at infinity. Emphasis is given to the MAXIMIN criterion which is to maximize the minimum client-to-facility distance. Distances are measured either in the Euclidean or the rectilinear metric. The properties of the optimal solution to the single facility problem are viewed from different, seemingly unrelated, perspectives ranging from plane geometry to duality theory. In particular, duality results from a mixed integer programming model are used to derive new properties of the optimal solution to the rectilinear problem. A new algorithm is developed for the rectilinear problem where the feasible region is a convex polygon. Unlike previous approaches, this method does not require linear programming at all. In addition to this, an interactive graphical approach is proposed as a site-generation tool used to identify potential locations in realistic problems. Its main advantages are that it requires minimal user intervention and makes no assumptions regarding the feasible region. It has been applied in large scale problems with up to 1000 clients, whereas the largest reported application so far involved 10 clients. Alternative models are presented for the multi-facility problem as well. Each of them is based on different assumptions and is applicable to specific situations. Moreover, an algorithm is established for the two-facility problem based on the properties of the optimal solution. To the best of our knowledge this is the first attempt to address this problem in the plane. Finally, a number of unresolved issues, especially in the multi-facility problem, are outlined and suggested as further research topics.
机译:本论文研究了以令人讨厌的设施的定位来解决计算问题的方法,这些设施应尽量减少它们对给定客户(例如人口中心)的影响。假设此类设施对给定客户端的不良影响是它们之间距离的递减函数,目标是将这些设施放置在距给定客户端组尽可能远的位置,但要遵守防止位于无穷大位置的约束。重点是MAXIMIN标准,该标准将最大程度地缩短客户到设施的最小距离。距离以欧几里德或直线公制测量。从平面几何到对偶理论的不同,看似无关的角度来看,针对单个设施问题的最优解的性质。特别地,来自混合整数规划模型的对偶结果用于导出直线问题的最优解的新属性。针对可行区域为凸多边形的直线问题,提出了一种新的算法。与以前的方法不同,此方法根本不需要线性编程。除此之外,还提出了一种交互式图形方法作为站点生成工具,用于识别现实问题中的潜在位置。它的主要优点是它需要最少的用户干预,并且不对可行区域做出任何假设。它已被应用于多达1000个客户的大规模问题中,而迄今为止,最大的报告应用涉及10个客户。还提出了针对多设施问题的替代模型。它们每个都基于不同的假设,并且适用于特定情况。此外,基于最优解的性质,建立了一种针对二元设施问题的算法。据我们所知,这是在飞机上解决此问题的首次尝试。最后,概述并提出了许多未解决的问题,尤其是在多设施问题中,作为进一步的研究主题。

著录项

  • 作者

    Giannikos Ioannis;

  • 作者单位
  • 年度 1993
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号