首页> 外文OA文献 >A deep learning approach to on-node sensor data analytics for mobile or wearable devices
【2h】

A deep learning approach to on-node sensor data analytics for mobile or wearable devices

机译:针对移动或可穿戴设备的节点传感器数据分析的深度学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The increasing popularity of wearable devices in recent years means that a diverse range of physiological and functional data can now be captured continuously for applications in sports, wellbeing, and healthcare. This wealth of information requires efficient methods of classification and analysis where deep learning is a promising technique for large-scale data analytics. Whilst deep learning has been successful in implementations that utilize high performance computing platforms, its use on low-power wearable devices is limited by resource constraints. In this paper, we propose a deep learning methodology, which combines features learnt from inertial sensor data together with complementary information from a set of shallow features to enable accurate and real-time activity classification. The design of this combined method aims to overcome some of the limitations present in a typical deep learning framework where on-node computation is required. To optimize the proposed method for real-time on-node computation, spectral domain pre-processing is used before the data is passed onto the deep learning framework. The classification accuracy of our proposed deep learning approach is evaluated against state-of-the-art methods using both laboratory and real world activity datasets. Our results show the validity of the approach on different human activity datasets, outperforming other methods, including the two methods used within our combined pipeline. We also demonstrate that the computation times for the proposed method are consistent with the constraints of real-time on-node processing on smartphones and a wearable sensor platform.
机译:近年来,可穿戴设备日益普及,这意味着现在可以连续捕获各种生理和功能数据,以用于体育,健康和医疗保健领域。如此丰富的信息需要有效的分类和分析方法,其中深度学习是用于大规模数据分析的有前途的技术。虽然深度学习已在利用高性能计算平台的实现中获得成功,但其在低功耗可穿戴设备上的使用受到资源限制的限制。在本文中,我们提出了一种深度学习方法,该方法将从惯性传感器数据中学到的特征与来自一组浅层特征的补充信息相结合,以实现准确和实时的活动分类。这种组合方法的设计旨在克服在需要节点计算的典型深度学习框架中存在的一些限制。为了优化提出的用于实时节点上计算的方法,在将数据传递到深度学习框架之前使用频谱域预处理。我们使用实验室和现实世界活动数据集,根据最新方法对我们提出的深度学习方法的分类准确性进行了评估。我们的结果表明,该方法在不同的人类活动数据集上的有效性,优于其他方法,包括我们联合管道中使用的两种方法。我们还证明了该方法的计算时间与智能手机和可穿戴传感器平台上实时节点处理的约束条件一致。

著录项

  • 作者

    Ravi D; Wong C; Lo B; Yang G;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号