首页> 外文OA文献 >Gradient free parameter estimation for hidden Markov models with intractable likelihoods
【2h】

Gradient free parameter estimation for hidden Markov models with intractable likelihoods

机译:具有难以处理的可能性的隐马尔可夫模型的梯度自由参数估计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this article we focus on Maximum Likelihood estimation (MLE) for the static model parameters of hidden Markov models (HMMs). We will consider the case where one cannot or does not want to compute the conditional likelihood density of the observation given the hidden state because of increased computational complexity or analytical intractability. Instead we will assume that one may obtain samples from this conditional likelihood and hence use approximate Bayesian computation (ABC) approximations of the original HMM. Although these ABC approximations will induce a bias, this can be controlled to arbitrary precision via a positive parameter , so that the bias decreases with decreasing . We first establish that when using an ABC approximation of the HMM for a fixed batch of data, then the bias of the resulting log- marginal likelihood and its gradient is no worse than O(n), where n is the total number of data-points. Therefore, when using gradient methods to perform MLE for the ABC approximation of the HMM, one may expect parameter estimates of reasonable accuracy. To compute an estimate of the unknown and fixed model parameters, we propose a gradient approach based on simultaneous perturbation stochastic approximation (SPSA) and Sequential Monte Carlo (SMC) for the ABC approximation of the HMM. The performance of this method is illustrated using two numerical examples.
机译:在本文中,我们重点介绍隐马尔可夫模型(HMM)静态模型参数的最大似然估计(MLE)。我们将考虑一种情况,即由于计算复杂性增加或分析难以处理,在给定隐藏状态的情况下无法或不希望计算观测条件的条件似然密度。取而代之的是,我们假设可以从这种条件似然中获取样本,因此可以使用原始HMM的近似贝叶斯计算(ABC)近似。尽管这些ABC近似值会引起偏差,但可以通过正参数将其控制为任意精度,以使偏差随着减小而减小。我们首先确定,当对固定的一批数据使用HMM的ABC近似值时,所得对数边际可能性及其梯度的偏差不会比O(n)差,其中n是数据的总数。点。因此,当使用梯度方法对HMM的ABC近似执行MLE时,可能会期望参数估计具有合理的准确性。为了计算未知和固定模型参数的估计值,我们针对HMM的ABC近似,提出了一种基于同时扰动随机逼近(SPSA)和顺序蒙特卡洛(SMC)的梯度方法。使用两个数值示例说明了该方法的性能。

著录项

  • 作者

    Ehrlich E; Jasra A; Kantas N;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号