首页> 外文OA文献 >The Decision Rule Approach to Optimisation under Uncertainty: Theory and Applications
【2h】

The Decision Rule Approach to Optimisation under Uncertainty: Theory and Applications

机译:不确定性下的优化决策规则方法:理论与应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Optimisation under uncertainty has a long and distinguished history in operations research.udDecision-makers realised early on that the failure to account for uncertainty in optimisationudproblems can lead to substantial unexpected losses or even infeasible solutions. Therefore,udapproximating the uncertain parameters by their average or nominal values may result inuddecisions that perform poorly in scenarios that deviate from the average.udFor the last sixty years, scenario tree-based stochastic programming has been the methodudof choice for solving optimisation problems affected by parameter uncertainty. This methodudapproximates the random problem parameters by finite scenarios that can be arranged as audtree. Unfortunately, this approximation suffers from a curse of dimensionality: the tree needsudto branch whenever new uncertainties are revealed, and thus its size grows exponentially withudthe number of decision stages.udIt has recently been argued that stochastic programs can quite generally be made tractableudby restricting the space of recourse decisions to those that exhibit a linear data dependence.udAn attractive feature of this linear decision rule approximation is that it typically leads toudpolynomial-time solution schemes. Unfortunately, the simple structure of linear decision rulesudsacrifices optimality in return for scalability. The worst-case performance of linear decisionudrules is in fact rather disappointing. When applied to two-stage robust optimisation problemsudwith m linear constraints, the underlying worst-case approximation ratio has been shown toudbe of the order O(√m). Therefore, in this thesis we endeavour to construct efficiently computableudinstance-wise bounds on the loss of optimality incurred by the linear decision ruleudapproximation.udThe contributions of this thesis are as follows. (i)We develop an efficient algorithm for assessingudthe loss of optimality incurred by the linear decision rule approximation. The key idea is toudapply the linear decision rule restriction not only to the primal but also to a dual version ofudthe stochastic program. Since both problems share a similar structure, both problems canudbe solved in polynomial-time. The gap between their optimal values estimates the loss ofudoptimality incurred by the linear decision rule approximation. (ii) We design an improvedudapproximation based on non-linear decision rules, which can be useful if the optimality gap ofudthe linear decision rules is deemed unacceptably high. The idea takes advantage of the fact that one can always map a linearly parameterised non-linear function into a higher dimensionaludspace, where it can be represented as a linear function. This allows us to utilise the machineryuddeveloped for linear decision rules to produce superior quality approximations that can beudobtained in polynomial time. (iii) We assess the performance of the approximations developedudin two operations management problems: a production planning problem and a supply chainuddesign problem. We show that near-optimal solutions can be found in problem instances withudmany stages and random parameters. We additionally compare the quality of the decision ruleudapproximation with classical approximation techniques. (iv) We develop a systematic approachudto reformulate multi-stage stochastic programs with a large (possibly infinite) number of stagesudas static robust optimisation problem that can be solved with a constraint sampling technique.udThe method is motivated via an investment planning problem in the electricity industry.
机译:不确定性条件下的优化在运筹学中有着悠久的历史。 ud决策者们很早就意识到,无法将优化 udproblems的不确定性考虑在内会导致大量意想不到的损失,甚至是不可行的解决方案。因此, ud不确定参数的平均值或名义值近似值可能会导致 uddecision在偏离平均值的方案中表现不佳。 ud在过去的60年中,基于方案树的随机编程一直是 udof选择的方法解决受参数不确定性影响的优化问题。此方法 ud通过可以安排为 udtree的有限方案来近似随机问题参数。不幸的是,这种近似受到维数诅咒的困扰:每当新的不确定性出现时,树就需要 udto分支,因此其大小随决策阶段的数量 ud呈指数增长。 ud最近有人认为,随机程序通常可以说是通过将追索权决策的空间限制到那些表现出线性数据依赖性的决策空间,从而变得易处理。 ud这种线性决策规则近似的一个吸引人的特征是,它通常会导致 ud多项式时间求解方案。不幸的是,线性决策规则 uds牺牲的简单结构以可伸缩性为回报。实际上,线性决策 udrules的最坏情况表现令人失望。当将其应用于具有m个线性约束的两阶段鲁棒优化问题时,底层最坏情况的逼近率已显示为(udm)阶O(√m)。因此,在本文中,我们努力构建关于线性决策规则 ud逼近所导致的最优性损失的可计算逐实例界。 ud本论文的贡献如下。 (i)我们开发了一种有效的算法,用于评估线性决策规则逼近所导致的最优性损失。关键思想是将线性决策规则限制不仅应用于原始程序,而且还应用于随机程序的双重版本。由于两个问题都具有相似的结构,因此两个问题都可以在多项式时间内解决。它们的最佳值之间的差距估计了线性决策规则逼近所导致的 udoptimality损失。 (ii)我们基于非线性决策规则设计一种改进的 ud逼近,如果认为线性决策规则的最优差距过高,这将很有用。这种想法利用了这样一个事实,即人们总是可以将线性参数化的非线性函数映射到更高的维 udspace中,在这里它可以表示为线性函数。这使我们能够利用为线性决策规则开发的机制来生成可以在多项式时间内获得的优质近似值。 (iii)我们评估在两个运营管理问题中产生的近似值的性能:生产计划问题和供应链 uddesign问题。我们表明,在具有 udmany阶段和随机参数的问题实例中可以找到接近最优的解决方案。此外,我们还将决策规则 udapproximation的质量与经典近似技术进行了比较。 (iv)我们开发了系统的方法重新制定具有大量(可能是无限个)阶段的多阶段随机程序 udas静态鲁棒优化问题,可以通过约束采样技术解决该问题。 ud该方法是通过投资推动的电力行业的规划问题。

著录项

  • 作者

    Georghiou Angelos;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号