首页> 外文OA文献 >Manifold Learning in MR spectroscopy using nonlinear dimensionality reduction and unsupervised clustering
【2h】

Manifold Learning in MR spectroscopy using nonlinear dimensionality reduction and unsupervised clustering

机译:利用非线性降维和无监督聚类在mR光谱中进行流形学习

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Purpose To investigate whether nonlinear dimensionality reduction improves unsupervised classification of 1H MRS brain tumor data compared with a linear method. Methods In vivo single-voxel 1H magnetic resonance spectroscopy (55 patients) and 1H magnetic resonance spectroscopy imaging (MRSI) (29 patients) data were acquired from histopathologically diagnosed gliomas. Data reduction using Laplacian eigenmaps (LE) or independent component analysis (ICA) was followed by k-means clustering or agglomerative hierarchical clustering (AHC) for unsupervised learning to assess tumor grade and for tissue type segmentation of MRSI data. Results An accuracy of 93% in classification of glioma grade II and grade IV, with 100% accuracy in distinguishing tumor and normal spectra, was obtained by LE with unsupervised clustering, but not with the combination of k-means and ICA. With 1H MRSI data, LE provided a more linear distribution of data for cluster analysis and better cluster stability than ICA. LE combined with k-means or AHC provided 91% accuracy for classifying tumor grade and 100% accuracy for identifying normal tissue voxels. Color-coded visualization of normal brain, tumor core, and infiltration regions was achieved with LE combined with AHC. Conclusion Purpose To investigate whether nonlinear dimensionality reduction improves unsupervised classification of 1H MRS brain tumor data compared with a linear method. Methods In vivo single-voxel 1H magnetic resonance spectroscopy (55 patients) and 1H magnetic resonance spectroscopy imaging (MRSI) (29 patients) data were acquired from histopathologically diagnosed gliomas. Data reduction using Laplacian eigenmaps (LE) or independent component analysis (ICA) was followed by k-means clustering or agglomerative hierarchical clustering (AHC) for unsupervised learning to assess tumor grade and for tissue type segmentation of MRSI data. Results An accuracy of 93% in classification of glioma grade II and grade IV, with 100% accuracy in distinguishing tumor and normal spectra, was obtained by LE with unsupervised clustering, but not with the combination of k-means and ICA. With 1H MRSI data, LE provided a more linear distribution of data for cluster analysis and better cluster stability than ICA. LE combined with k-means or AHC provided 91% accuracy for classifying tumor grade and 100% accuracy for identifying normal tissue voxels. Color-coded visualization of normal brain, tumor core, and infiltration regions was achieved with LE combined with AHC. Conclusion The LE method is promising for unsupervised clustering to separate brain and tumor tissue with automated color-coding for visualization of 1H MRSI data after cluster analysis.
机译:目的探讨与线性方法相比,非线性降维是否改善了1H MRS脑肿瘤数据的无监督分类。方法从经病理组织学诊断的神经胶质瘤中获取体内单体素1H磁共振波谱(55例)和1H磁共振波谱成像(MRSI)(29例)。使用拉普拉斯特征图(LE)或独立成分分析(ICA)进行数据缩减,然后进行k均值聚类或聚集层次聚类(AHC),进行无监督学习以评估肿瘤等级和MRSI数据的组织类型分割。结果LE在无监督聚类的情况下获得了分类准确度为93%的II级和IV级神经胶质瘤,在区分肿瘤和正常光谱方面的准确度为100%,但没有将k-means和ICA相结合。通过1H MRSI数据,LE提供了比ICA更线性的数据分布,用于聚类分析和更好的聚类稳定性。 LE与k均值或AHC结合可提供91%的准确度来分类肿瘤等级,并提供100%的准确度来识别正常组织体素。 LE结合AHC可以实现正常大脑,肿瘤核心和浸润区域的彩色编码可视化。结论目的探讨非线性降维方法与线性方法相比是否能改善1H MRS脑肿瘤数据的无监督分类。方法从经病理组织学诊断的神经胶质瘤中获取体内单体素1H磁共振波谱(55例)和1H磁共振波谱成像(MRSI)(29例)。使用拉普拉斯特征图(LE)或独立成分分析(ICA)进行数据缩减,然后进行k均值聚类或聚集层次聚类(AHC),进行无监督学习以评估肿瘤等级和MRSI数据的组织类型分割。结果LE在无监督聚类的情况下获得了分类准确度为93%的II级和IV级神经胶质瘤,在区分肿瘤和正常光谱方面的准确度为100%,但没有将k-means和ICA相结合。通过1H MRSI数据,LE提供了比ICA更线性的数据分布,用于聚类分析和更好的聚类稳定性。 LE与k均值或AHC结合可提供91%的准确度来分类肿瘤等级,并提供100%的准确度来识别正常组织体素。 LE结合AHC可以实现正常大脑,肿瘤核心和浸润区域的彩色编码可视化。结论LE方法有望在无监督的聚类分析中通过自动颜色编码将1H MRSI数据可视化,从而将大脑和肿瘤组织分开。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号