首页> 外文OA文献 >On the influence of physical and chemical structure on charge transport in disordered semiconducting materials and devices
【2h】

On the influence of physical and chemical structure on charge transport in disordered semiconducting materials and devices

机译:关于物理和化学结构对无序半导体材料和器件中电荷传输的影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Achieving fast charge carrier transport in disordered organic semiconductors is of great importanceudfor the development of organic electronic devices. Disordered organic materials generally show lowudcharge carrier mobilities due to their inherent energetic and configurational disorder, and the presenceudof chemical and physical defects. Efforts to improve mobility typically involve chemical designudand materials processing to control macromolecular conformation and/or induce greater crystallineudor liquid crystalline order. Whilst in many cases fruitful, these approaches have not always translatedudinto higher bulk mobilities in devices. Addressing the adverse effect on mobility of specific types of disorder or specific defects has proven difficult due to problems distinguishing the manyudsuch features spectroscopically and controlling their formation in isolation.udIn the three experimental Chapters following, we attempt to make clear links between the chargeudcarrier mobility and the presence of specific structural defects or sources of energetic or configurational disorder. In the first experimental study, we investigate hole transport in a family of polyfluorenes based on poly(9,9-dioctylfluorene) (PFO). By controlling the phase formation of theudmaterials through processing and by virtue of their chemical design, we examine the effect on transportudof distinct material phases. Remarkably, we are able to isolate the effect of the single chainudconformation of PFO known as the beta-phase and show that when embedded in a glassy PFOudmatrix it acts as a strong hole trap, reducing the mobility of the bulk material by over two ordersudof magnitude. By fabricating a device with negligible beta-phase, we demonstrate the highestudtime-of-flight mobility in PFO to date, at over 3 10-2 cm2/Vs. This study provides the first clear and unambiguous example of the effect on transport of a distinct conformational defect inuda conjugated polymer. We also demonstrate the adverse effect on mobility of crystallinity in theudpolyfluorenes. We suggest that our findings may generalise to other systems in the sense that theudmobility may be limited by a minority population of structural traps, which may include highlyudordered, crystalline regions. Significant mobility improvements may then be more easily achievedudby removing the minority ordered phases than by increasing their concentration. We believe thatudthis approach offers an alternative paradigm by which higher mobilities may be obtained in general,udand in particular in systems where crystallinity is undesirable. In the second experimental study, we study charge transport in the fullerene derivatives [6,6]-phenyl-C61-butyric acid methyl ester (PCBM), bis-PCBM and tris-PCBM. The fullerene multi-adductsudbis-PCBM and tris-PCBM are of interest as alternative OPV acceptor materials with the potentialudto increase open-circuit voltage. However, most OPV blends employing the multi-adducts haveudfailed to improve upon those employing PCBM. This is thought to be a result of the inferior electronudtransport properties of the multi-adducts, due to either (i) higher energetic disorder in the multiadductsuddue to the presence of isomers with varying LUMO energies or (ii) higher con gurationaluddisorder due to a lower degree of order in molecular packing in the multi-adducts than in PCBM.udWe distinguish the e ects of energetic and con gurational disorder using temperature-dependentudToF and FET measurements. We find that differences in configurational disorder appear negligible,udand that the reduced mobility in the multi-adducts is due predominantly to the energetic disorderudresulting from the presence of a mixture of isomers with varying LUMO energies.udIn the third and final experimental study, we examine the charge transport properties of polymer:udPCBM blends for OPV, focusing on the PTB7:PCBM and P3HT:PCBM systems. In particular,udwe address the question of why state-of-the-art OPV systems such as PTB7:PCBM perform soudmuch worse at large active layer thicknesses than P3HT:PCBM. We find that low electron mobilityudis the main cause of this di erence. The electron mobility in PTB7:PCBM blends, at 10-5 { 10-4udcm2/Vs, is 1-2 orders of magnitude lower than the electron mobility in annealed P3HT:PCBM, atudover 10-3 cm2/Vs. The hole mobility, in contrast, is the same to within a factor of approximatelyudthree. We hypothesise that the low tendency of PTB7 to order leads to a low degree of phase separationudin the blend and to a poorly connected, disordered PCBM phase. We find that increasingudthe PCBM fraction is very effective in improving electron transport and electrical Fill Factor, butudstrongly reduces absorption. We suggest that a key challenge for OPV researchers is thus to achieveudbetter connectivity and ordering in the fullerene phase in blends without relying on either (i) a largeudexcess of fullerene or (ii) strong crystallisation of the polymer.
机译:在无序的有机半导体中实现快速的载流子传输对于有机电子器件的发展具有重要意义。由于有机材料固有的能量和构型紊乱,以及化学和物理缺陷的存在,无序的有机材料通常显示出较低的电荷迁移率。改善迁移率的努力通常涉及化学设计/处理和材料处理以控制大分子构象和/或诱导更大的结晶/或液晶顺序。尽管在许多情况下卓有成效,但这些方法并非总能转化为设备中更高的整体移动性。由于在光谱上区分许多这样的特征并孤立地控制它们的形成的问题,事实证明解决特定类型的疾病或特定缺陷对运动性的不利影响是困难的。在下面的三个实验章节中,我们试图在两者之间建立清晰的联系。电荷载流子迁移率以及特定结构缺陷的存在或能量或构象障碍的来源。在第一个实验研究中,我们研究了基于聚(9,9-二辛基芴)(PFO)的一系列聚芴中的空穴传输。通过控制加工过程中材料的相形成并借助其化学设计,我们研究了对不同材料相传输的影响。值得注意的是,我们能够分离出被称为β相的PFO单链 ud构象的影响,并表明当嵌入玻璃状PFO udmatrix中时,它起到了强大的空穴陷阱的作用,从而降低了散装材料的迁移率超过两个数量级。通过制造具有可忽略的β相的器件,我们证明了迄今为止PFO的最高 udtime-of-flytime飞行时迁移率,超过3 10-2 cm2 / Vs。这项研究提供了第一个清晰明确的例子,说明了共轭聚合物中独特的构象缺陷对运输的影响。我们还证明了对 udpoly芴中结晶度迁移率的不利影响。我们建议我们的发现可以从某种意义上说可以推广到其他系统,即流动性可能受到少数结构陷阱的限制,其中可能包括高度无序的结晶区域。然后,通过除去少数有序相而不是增加其集中度,可以更容易地实现显着的迁移性改善。我们认为,这种方法提供了另一种范式,通过它通常可以获得更高的迁移率,尤其是在不希望结晶性的系统中。在第二项实验研究中,我们研究了富勒烯衍生物[6,6]-苯基-C61-丁酸甲酯(PCBM),bis-PCBM和tris-PCBM中的电荷传输。富勒烯多加合物 udbis-PCBM和tris-PCBM作为OPV受体材料的替代品,具有增加开路电压的潜力。但是,大多数使用多加合物的OPV混合物都无法对采用PCBM的混合物进行改进。认为这是由于多加合物的电子/过传输性质较差的结果,这是由于(i)多加合物中的高能紊乱/由于存在具有不同LUMO能量的异构体或(ii)较高的本构 ud混乱是由于多加合物中分子堆积的顺序程度低于PCBM。 ud我们使用依赖于温度的 udToF和FET测量来区分高能和配偶性障碍的影响。我们发现构型无序的差异似乎可以忽略不计, udd多加合物中迁移率降低主要归因于高能紊乱 d,这是由于存在具有不同LUMO能量的异构体混合物所致。通过研究,我们研究了用于OPV的聚合物: udPCBM混合物的电荷传输性能,重点研究了PTB7:PCBM和P3HT:PCBM系统。特别是, udwe解决了以下问题:为什么在大的有源层厚度下,诸如PTB7:PCBM之类的最先进的OPV系统的性能会比P3HT:PCBM这么差。我们发现低电子迁移率是造成这种差异的主要原因。在10-5 {10-4 udcm2 / Vs下,PTB7:PCBM混合物中的电子迁移率比在10-3 cm2 / Vs下退火的P3HT:PCBM中的电子迁移率低1-2个数量级。相反,空穴迁移率在大约三倍之内相同。我们假设PTB7有序化的趋势较低,导致共混物中的相分离度较低,并且连接不良,无序的PCBM相。我们发现增加 PCBM分数对于改善电子传输和电填充因子非常有效,但会大大降低吸收。我们建议,对于OPV研究人员而言,一项关键挑战是在不依赖于(i)较大的富勒烯(d)富勒烯或(ii)聚合物的强烈结晶的情况下,实现共混物中富勒烯相的更好的连接性和有序化。

著录项

  • 作者

    Foster Samuel;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号