首页> 外文OA文献 >A biosensor-based digital microfluidic system for neuroanalysis in the intensive care unit
【2h】

A biosensor-based digital microfluidic system for neuroanalysis in the intensive care unit

机译:基于生物传感器的数字微流体系统,用于重症监护病房的神经分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The primary focus of this thesis is the development of a digital microfluidicudbased system with integrated microelectrode biosensors, designedudfor the analysis of human brain microdialysate in the intensive care unit.udThe main aim is to measure the neurochemical effects of spreading depolarisationsud(SD waves), which have been shown to be detrimental toudthe injured human brain.udA combined electrode was developed containing working electrodes in theudrange of 25 to 125 μM, a reference electrode and an auxiliary electrode,udwithin a needle of outer diameter 300 to 500 μm. Glucose, lactate andudATP biosensors were developed with detection limits of 2 to 10 μM andudresponse times of under 10 seconds.udA digital microfluidic system was designed to segment the dialysate atuda microdialysis probe outlet, thereby eliminating Taylor dispersion andudreducing the time lag between the sample leaving the brain and analysis.udDifferent designs are discussed for the manipulation of droplets for optimaludanalysis, thus creating a microfluidic toolkit. The analysis chamberudwas analysed mathematically, the optimal placement of electrodes foundudand the sensor performance assessed on-chip.udThe on-chip glucose biosensor was used in vivo in a translational pilotudstudy. The biosensor performance was validated against rapid samplingudmicrodialysis with excellent results. The glucose biosensors successfullyudmonitored concentration changes, in response to stimulations, in theudrange of 10 to 400 μM. The data shows that during a SD wave, thereudis a time delay between the increase in potassium and the decrease inudglucose, due to the uncoupling of blood flow and metabolism. For theudfirst time, the microfluidic system was used in the intensive care unit,udmonitoring brain injury patients at the bedside.
机译:本论文的主要重点是开发具有集成微电极生物传感器的数字微流控/基于ud的系统,该系统旨在分析重症监护病房中的人脑微透析液。 ud主要目的是测量扩散去极化的神经化学作用 ud(SD波),已证明对受伤的人脑有害。 ud开发了一种复合电极,包含25至125μM范围内的工作电极,参考电极和辅助电极, ud针的外径为300至500μm。开发了葡萄糖,乳酸和 udATP生物传感器,检测限为2至10μM,响应时间在10秒以下。 ud数字微流系统设计用于在微透析探针出口处分割透析液,从而消除了泰勒分散和减少了样品离开大脑与分析之间的时间间隔。 ud讨论了不同的液滴操作设计,以实现最佳的 udanalysis,从而创建了微流体工具包。对分析室进行了数学分析,找到了最佳的电极放置位置,并在芯片上评估了传感器性能。 ud将芯片上葡萄糖生物传感器用于体内平移试验/研究中。该生物传感器性能针对快速采样/微量渗析进行了验证,结果极佳。响应于刺激,葡萄糖生物传感器成功监测的浓度变化在10至400μM的范围内。数据表明,在SD波期间,由于血流和新陈代谢的不耦合,钾的增加与葡萄糖的减少之间存在时间延迟。第一次,在重症监护病房使用微流控系统,监测床边的脑损伤患者。

著录项

  • 作者

    Rogers Michelle Louise;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号