首页> 外文OA文献 >Diagnosing, predicting and managing application performance in virtualised multi-tenant clouds
【2h】

Diagnosing, predicting and managing application performance in virtualised multi-tenant clouds

机译:诊断,预测和管理虚拟化多租户云中的应用程序性能

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

As the computing industry enters the cloud era, multicore architectures and virtualisation technologies are replacing traditional IT infrastructures for several reasons including reduced infrastructure costs, lower energy consumption and ease of management. Cloud-based software systems are expected to deliver reliable performance under dynamic workloads while efficiently allocating resources. However, with the increasing diversity and sophistication of the environment, managing performance of applications in such environments becomes difficult.udThe primary goal of this thesis is to gain insight into performance issues of applications running in clouds. This is achieved by a number of innovations with respect to the monitoring, modelling and managing of virtualised computing systems: (i) Monitoring – we develop a monitoring and resource control platform that, unlike early cloud benchmarking systems, enables service level objectives (SLOs) to be expressed graphically as Performance Trees; these source both live and historical data. (ii) Modelling – we develop stochastic models based on Queue- ing Networks and Markov chains for predicting the performance of applications in multicore virtualised computing systems. The key feature of our techniques is their ability to characterise performance bottlenecks effectively by modelling both the hypervisor and the hardware. (iii) Managing – through the integration of our benchmarking and modelling techniques with a novel interference-aware prediction model, adaptive on-line reconfiguration and resource control in virtualised environments become lightweight target-specific operations that do not require sophisticated pre-training or micro-benchmarking.udThe validation results show that our models are able to predict the expected scalability behaviour of CPU/network intensive applications running on virtualised multicore environments with relative errors of between 8 and 26%. We also show that our performance interference prediction model can capture a broad range of workloads efficiently, achieving an average error of 9% across different applications and setups. We implement this model in a private cloud deployment in our department, and we evaluate it using both synthetic benchmarks and real user applications. We also explore the applicability of our model to both hypervisor reconfiguration and resource scheduling. The hypervisor reconfiguration can improve network throughput by up to 30% while the interference-aware scheduler improves application performance by up to 10% compared to the default CloudStack scheduler.
机译:随着计算行业进入云计算时代,多核架构和虚拟化技术正在取代传统的IT基础架构,其原因有很多,包括降低基础架构成本,降低能耗和易于管理。基于云的软件系统有望在动态工作负载下提供可靠的性能,同时有效地分配资源。但是,随着环境的多样性和复杂性的增加,在这样的环境中管理应用程序的性能变得困难。 ud本文的主要目的是深入了解云中运行的应用程序的性能问题。这是通过在虚拟化计算系统的监视,建模和管理方面的许多创新来实现的:(i)监视-我们开发了一个监视和资源控制平台,与早期的云基准测试系统不同,它实现了服务水平目标(SLO)用图形表示为性能树;这些都提供实时和历史数据。 (ii)建模–我们基于排队网络和马尔可夫链开发随机模型,以预测多核虚拟化计算系统中应用程序的性能。我们技术的关键特征是它们能够通过对虚拟机管理程序和硬件进行建模来有效表征性能瓶颈。 (iii)管理-通过将我们的基准测试和建模技术与新型的干扰感知预测模型相集成,虚拟化环境中的自适应在线重新配置和资源控制成为轻量级针对特定目标的操作,无需进行复杂的预训练或微操作-benchmarking。 ud验证结果表明,我们的模型能够预测在虚拟化多核环境中运行的CPU /网络密集型应用程序的预期可伸缩性行为,相对误差在8%到26%之间。我们还表明,我们的性能干扰预测模型可以有效捕获各种工作负载,在不同的应用程序和设置中平均误差为9%。我们在部门的私有云部署中实施此模型,并使用综合基准和实际用户应用程序对其进行评估。我们还探讨了我们的模型在管理程序重新配置和资源调度方面的适用性。与默认的CloudStack调度程序相比,管理程序重新配置可以将网络吞吐量提高多达30%,而具有干扰意识的调度程序可以将应用程序性能提高多达10%。

著录项

  • 作者

    Chen Xi;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号