首页> 外文OA文献 >CloudScope: diagnosing and managing performance interference in multi-tenant clouds
【2h】

CloudScope: diagnosing and managing performance interference in multi-tenant clouds

机译:Cloudscope:诊断和管理多租户云中的性能干扰

摘要

© 2015 IEEE.Virtual machine consolidation is attractive in cloud computing platforms for several reasons including reduced infrastructure costs, lower energy consumption and ease of management. However, the interference between co-resident workloads caused by virtualization can violate the service level objectives (SLOs) that the cloud platform guarantees. Existing solutions to minimize interference between virtual machines (VMs) are mostly based on comprehensive micro-benchmarks or online training which makes them computationally intensive. In this paper, we present CloudScope, a system for diagnosing interference for multi-tenant cloud systems in a lightweight way. CloudScope employs a discrete-time Markov Chain model for the online prediction of performance interference of co-resident VMs. It uses the results to optimally (re)assign VMs to physical machines and to optimize the hypervisor configuration, e.g. the CPU share it can use, for different workloads. We have implemented CloudScope on top of the Xen hypervisor and conducted experiments using a set of CPU, disk, and network intensive workloads and a real system (MapReduce). Our results show that CloudScope interference prediction achieves an average error of 9%. The interference-aware scheduler improves VM performance by up to 10% compared to the default scheduler. In addition, the hypervisor reconfiguration can improve network throughput by up to 30%.
机译:©2015 IEEE。虚拟机整合在云计算平台中具有吸引力,原因有很多,包括降低基础架构成本,降低能耗和易于管理。但是,虚拟化导致的共居工作负载之间的干扰可能会违反云平台所保证的服务水平目标(SLO)。现有的使虚拟机(VM)之间的干扰最小化的解决方案主要基于全面的微基准测试或在线培训,这使它们在计算上变得非常密集。在本文中,我们介绍了CloudScope,这是一种用于以轻量级方式诊断多租户云系统干扰的系统。 CloudScope使用离散时间马尔可夫链模型在线预测共同驻留VM的性能干扰。它使用结果将VM最佳地(重新)分配给物理机并优化虚拟机监控程序配置,例如它可以用于不同工作负载的CPU份额。我们已经在Xen虚拟机管理程序之上实现了CloudScope,并使用一组CPU,磁盘和网络密集型工作负载以及一个真实系统(MapReduce)进行了实验。我们的结果表明,CloudScope干扰预测的平均误差为9%。与默认调度程序相比,可识别干扰的调度程序将VM性能提高了10%。此外,管理程序重新配置可以将网络吞吐量提高多达30%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号