首页> 外文OA文献 >Stem cell bioprocessing: bioreactor design and characterisation by computational fluid dynamics and the differentiation of murine embryonic stem cells into the alveolar progenitor cells in sparged bioreactors
【2h】

Stem cell bioprocessing: bioreactor design and characterisation by computational fluid dynamics and the differentiation of murine embryonic stem cells into the alveolar progenitor cells in sparged bioreactors

机译:干细胞生物加工:生物反应器设计和表征通过计算流体动力学和小鼠胚胎干细胞分化为喷射生物反应器中的肺泡祖细胞

摘要

A conventional 2D (two-dimensional) culture, in T-flasks or multi-well plates, is commonly perfo med for the stem cell development; however, it is time and labour consuming process. Moreover, it is impractical to scale-up to high cell number production. Growing stem cells inside bioreactor might be a solution. 3D bioreactor is not only a solution for scalable production but also a mimic environment for in vivo system. Herein, sparged-type bioreactors (e.g. airliftudbioreactor) were chosen as bioreactors to differentiate murine embryonic stem cells (mESCs)udinto type II pneumocytes in the lung. There are two main sections in this thesis: the design ofudairlift bioreactor using computational fluid dynamics (CFD) and the differentiation of mESCsudinto the alveolar progenitor cells in a sparged bioreactor. The airlift bioreactors provide a betterudenvironment, which theoretically has been known to simulate the gas-exchange interface encountered in the lung alveoli. They require a low power input and provide a low shear environment with good mixing. The hydrodynamics (gas holdup, superficial liquid velocity, and shear rate) and mass transfer (kLa, the volumetric mass transfer coefficient) features of different airlift designs were determined by CFD. The simulations were based on a 3D transient model, Eulerian-Eulerian approach, and two-phase liquid/gas model with all phases being treated as laminar flow. The superficial gas velocity was varied from 0.001 m/s to 0.02 m/s. Theudsimulation results indicated that the hydrodynamics were corresponded to the data found inudliteratures and the gas holdup were agreed with an experiment validation. The CFD results alsoudsuggested that in which range of superficial gas velocity (ug) that the system can be operatedudwithout any fluctuation in terms of the hydrodynamics. In addition, the airlift bioreactor isudsuitable for shear sensitive cells with high mass transfer rate, e.g. kLa, = 180 hr-1 at ug= 0.01 m/sudand normoxia (20% O2) condition. Hence, the results from these simulations have been initiallyudutilised as a promising hypothesis to design an airlift bioreactor for the scalable andudautomatable culture in multiphase bioreactors. For the second part, mESCs were encapsulatedudin a calcium-alginate hydrogel to create a 3D environment then the encapsulated cells weregrown in both 3D static culture, in a T-flasks, and the sparged bioreactor. The gas, 5% CO2 andud20% O2, was directly sparged into the bioreactor. The A549 conditioned medium was used toudinduced the mESCs to the endodermal lineages, targeting for the alveolar type II cells, type IIudpneumocytes. The differentiated cells expressed lung cell markers: SPC (pneumocyte type II),udand FoxA2 (endoderm marker). In experiments, the relative expression of SPC markers reachedudthe maximum level, 10-fold increase, at day 14 and day 20 for 3D static culture and the spargedudbioreactor, respectively. After day 20 of the differentiation process, the pneumocyte-like cells inudstatic culture trend to lose their SPC expression whereas the cells in sparged bioreactorudmaintain relatively high SPC markers. At the end of a differentiation protocol, day 30, it wasudobserved that both systems highly expressed the endodermal makers, FoxA2, i.e. approximatelyud2000-fold increase for static culture and 5000-fold increase for the sparged bioreactor. Inudconclusion, the direct gassing in the sparged bioreactor not only enhanced the differentiation ofudembryonic stem cells into type II pneumocytes but also mimicked the in vivo environment in theudlung therefore the differentiated cells can maintain the lung phenotype for a long term culture,udup to 5 weeks in vitro culture. This in vitro system would be beneficial for drug screening andudregenerative medicine applications.
机译:T瓶或多孔板中的常规2D(二维)培养通常用于干细胞发育。然而,这是耗时且费力的过程。而且,将规模扩大到高细胞数目生产是不切实际的。生物反应器内部生长的干细胞可能是一种解决方案。 3D生物反应器不仅是可扩展生产的解决方案,而且是体内系统的模拟环境。在此,选择喷雾型生物反应器(例如,airlift udbio反应器)作为生物反应器,以将鼠类胚胎干细胞(mESCs) udin分化为肺中的II型肺细胞。本论文主要分为两个部分:利用计算流体动力学(CFD)设计 udairlift生物反应器和将mESCs udin分化为大量生物反应器中的肺泡祖细胞。气举生物反应器提供了更好的环境,理论上可以模拟肺泡中遇到的气体交换界面。它们需要低功率输入,并提供良好混合的低剪切环境。通过CFD确定了不同空运设计的流体动力学(气体滞留率,表观液体速度和剪切速率)和传质(kLa,体积传质系数)特征。模拟基于3D瞬态模型,Eulerian-Eulerian方法和两相液/气模型,所有相均视为层流。表观气体速度从0.001m / s变化到0.02m / s。模拟结果表明,流体动力学与文献中的数据相对应,气体含气量与实验验证一致。 CFD结果也表明,该系统可以在不影响流体动力学波动的情况下在哪个表观气体速度(ug)范围内运行。另外,空运生物反应器适合于具有高传质速率的剪切敏感细胞,例如高分子量的生物反应器。在ug = 0.01 m / s udand常氧(20%O2)条件下,kLa,= 180 hr-1。因此,这些模拟的结果最初已被用作有前途的假设,以设计用于多相生物反应器中可扩展和自动化的培养的气举生物反应器。对于第二部分,将mESCs封装在藻酸钙水凝胶中以创建3D环境,然后在3D静态培养,T瓶和鼓泡的生物反应器中生长被封装的细胞。将5%CO2和 ud20%O2的气体直接喷射到生物反应器中。使用A549条件培养基将mESC诱导到内胚层谱系,靶向肺泡II型细胞,II型肺炎细胞。分化的细胞表达肺细胞标记:SPC(II型肺细胞),ud和FoxA2(内胚层标记)。在实验中,对于3D静态培养和喷射的 udbioreactor,SPC标记的相对表达分别在第14天和第20天达到最大水平,增加了10倍。分化过程的第20天后,稳定培养中的肺细胞样细胞趋于丧失其SPC表达,而大量生物反应器中的细胞保持较高的SPC标记。在分化方案结束时,第30天,这两个系统都高度表达了内胚层制造商FoxA2,即静态培养物增加了约2000倍,喷射生物反应器增加了5000倍。结论中,直接在鼓泡的生物反应器中放气不仅增强了胚胎干细胞向II型肺细胞的分化,而且还模仿了胚胎中的体内环境,因此分化后的细胞可以长期维持肺表型。 ,最多5周的体外培养。该体外系统将对药物筛选和过度再生医学应用有益。

著录项

  • 作者

    Paopo Idtisak;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号