首页> 外文OA文献 >Parity games : descriptive complexity and algorithms for new solvers
【2h】

Parity games : descriptive complexity and algorithms for new solvers

机译:奇偶校验游戏:新解算器的描述复杂性和算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Parity games are 2-person, 0-sum, graph-based, and determined gamesudthat form an important foundational concept in formal methods (see e.g.,ud[Zie98]), and their exact computational complexity has been an open problemudfor over twenty years now.udIn this thesis, we study algorithms that solve parity games in that theyuddetermine which nodes are won by which player, and where such decisionsudare supported with winning strategies. We modify and so improve a knownudalgorithm but also propose new algorithmic approaches to solving parityudgames and to understanding their descriptive complexity.udFor all of our contributions, we write our own custom frameworks, in theudScala programming language, to perform tailored experiments and empiricaludstudies to demonstrate and support our theoretical findings.udFirst, we improve on one of the solver algorithms, based on small progressudmeasures [Jur00], by use of concurrency. We show that, for many parityudgames, it is possible to deliver extra performance using this technique in audmulti-core environment.udSecond, we design algorithms to reduce the computational complexityudof parity games, and create implementations to observe and evaluate theudbehaviours of these reductions in our experimental settings. The measureudRabin index, arising from the design of the said algorithm, is shown to be audnew descriptive complexity for parity games.udFinally, we define a new family of attractors and derive new parity game solvers from them. Although these new solvers are “partial”, in that theyuddo not solve all parity games completely, our experiments show that they doudsolve a set of benchmark games (i.e., games with known structures) designedudto stress test solvers from PGSolver toolkit [FL10] completely, and some ofudthese partial solvers deliver favourable performance against a known highudperformance solver in many circumstances.
机译:奇偶校验游戏是2人,0和,基于图的确定游戏, ud在正式方法中形成了重要的基础概念(例如,参见 ud [Zie98]),其确切的计算复杂度一直是一个未解决的问题在过去的20多年中。 ud本文研究了解决奇偶游戏的算法,因为它们确定了哪个玩家赢得了哪个节点,以及在哪些决策中获胜的策略得到了支持。我们修改并改进了已知的 udal算法,但也提出了新的算法方法来解决奇偶校验 udgame,并理解其描述复杂性。 ud对于我们的所有贡献,我们都使用 udScala编程语言编写了自己的自定义框架来执行量身定制的实验和经验研究来证明和支持我们的理论发现。 ud首先,我们基于并发对基于小进度 ud措施[Jur00]的一种求解器算法进行了改进。我们证明,对于许多奇偶校验 udgame,可以在 ud多核环境中使用此技术来提供额外的性能。 ud第二,我们设计算法以降低计算复杂性 udof奇偶校验游戏,并创建实现以观察和观察在我们的实验环境中评估这些减少的行为。由该算法的设计产生的measure udRabin指数显示为奇偶游戏的描述新复杂性。 ud最后,我们定义了一个新的吸引子家族,并从中吸引了新的奇偶游戏解算器。尽管这些新的求解器是“部分的”,但它们并不能完全求解所有平价游戏,但我们的实验表明,它们确实可以求解PGSolver设计的一组基准测试(即具有已知结构的游戏) uds压力测试求解器完整的工具包[FL10],并且在许多情况下,某些这类局部求解器提供的性能要优于已知的高性能非求解器。

著录项

  • 作者

    Kuo Huan-Pu;

  • 作者单位
  • 年度 2013
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号