首页> 外文期刊>Concurrency, practice and experience >Toward amultilevel scalable parallel Zielonka’s algorithm for solving parity games
【24h】

Toward amultilevel scalable parallel Zielonka’s algorithm for solving parity games

机译:朝向Aullilevel可扩展并行Zielonka的解决奇偶校验算法

获取原文
获取原文并翻译 | 示例

摘要

In this work, we perform the feasibility analysis of a multi-grained parallel version of the Zielonka Recursive (ZR) algorithm exploiting the coarse- and fine- grained concurrency. Coarse-grained parallelism relies on a suitable splitting of the problem, that is, a graph decomposition based on its Strongly Connected Components (SCC) or a splitting of the formula generating the game, while fine-grained parallelism is introduced inside the Attractor which is the most intensive computational kernel. This configuration is new and addressed for the first time in this article. Innovation goes from the introduction of properly defined metrics for the strong and weak scaling of the algorithm. These metrics conduct to an analysis of the values of these metrics for the fine grained algorithm, we can infer the expected performance of the multi-grained parallel algorithm running in a distributed and hybrid computing environment. Results confirm that while a fine-grained parallelism have a clear performance limitation, the performance gain we can expect to get by employing a multilevel parallelism is significant.
机译:在这项工作中,我们对利用粗糙和细粒度并发的Zielonka递归(ZR)算法的多粒并并行版本的可行性分析。粗粒度并行性依赖于问题的合适分裂,即,基于其强连接的部件(SCC)或产生游戏的公式的分裂的曲线图,而细粒并行于吸引子内引入最强烈的计算内核。此配置是新的,并在本文中第一次解决。创新从引入算法的强大和弱缩放的正确定义度量。这些指标对对细粒算法的这些度量标准的值进行分析,我们可以推断在分布式和混合计算环境中运行的多粒并行算法的预期性能。结果证实,虽然细粒度并行性具有明确的性能限制,但我们可以通过采用多级并行性来获得的性能增益是显着的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号