首页> 外文OA文献 >The Turing machine paradigm in contemporary computing
【2h】

The Turing machine paradigm in contemporary computing

机译:当代计算中的图灵机范式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The importance of algorithms is now recognized in all mathematical sciences,udthanks to the development of computability and computationaludcomplexity theory in the 20th century. The basic understanding of computabilityudtheory developed in the nineteen thirties with the pioneeringudwork of mathematicians like G¨odel, Church, Turing and Post. Their workudprovided the mathematical basis for the study of algorithms as a formalizedudconcept. The work of Hartmanis, Stearns, Karp, Cook and othersudin the nineteen sixties and seventies showed that the refinement of theudtheory to resource-bounded computations gave the means to explain theudmany intuitions concerning the complexity or hardness of algorithmicudproblems in a precise and rigorous framework.udThe theory has its roots in the older questions of definability, provabilityudand decidability in formal systems. The breakthrough in the nineteenudthirties was the formalisation of the intuitive concept of algorithmicudcomputability by Turing. In his famous 1936-paper, Turing [43] presenteduda model of computation that was both mathematically rigorous and generaludenough to capture the possible actions that any human computer udcould carry out. Although the model was presented well before digitaludcomputers arrived on the scene, it has the generality of describingudcomputations at the individual bit-level, using very basic control commands.udComputability and computational complexity theory are nowudfirmly founded on the Turing machine paradigm and its ramificationsudin recursion theory. In this paper we will extend the Turing machineudparadigm to include several key features of contemporary informationudprocessing systems.
机译:现在,由于20世纪可计算性和计算复杂性理论的发展,所有数学科学都认识到算法的重要性。在19世纪30年代,随着诸如Göodel,Church,Turing和Post之类的数学家的开创性的工作,对可计算性/理论的基本理解得到了发展。他们的工作为形式化的概念提供了算法研究的数学基础。 Hartmanis,Stearns,Karp,Cook和其他人在19、70和70年代的工作表明, udory对资源有限的计算的改进提供了解释 udin许多直觉的方法,这些直觉涉及算法 udproblems的复杂性或难度。该理论起源于较早的问题,即形式系统中的可定义性,可证明性可确定性。在19世纪90年代的突破是图灵对算法可计算性的直观概念的形式化。图灵[43]在他著名的1936年论文中提出了一种计算模型,该模型在数学上既严格又通用,足以捕捉任何人类计算机可能执行的动作。尽管该模型是在数字 udcomputers出现之前就提出的,但是它具有使用非常基本的控制命令在单个位级别上描述 udcomputation的通用性。 ud可计算性和计算复杂性理论现在肯定基于Turing建立机器范式及其后果 udin递归理论。在本文中,我们将扩展Turing机器 udparadigm以包括现代信息 udprocessing系统的几个关键功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号