首页> 外文OA文献 >Independent component analysis of high-density electromyography in muscle force estimation
【2h】

Independent component analysis of high-density electromyography in muscle force estimation

机译:高密度肌电图在肌力估计中的独立成分分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Accurate force prediction from surface electromyography (EMG) forms an important methodological challenge in biomechanics and kinesiology. In a previous study (Staudenmann , 2006), we illustrated force estimates based on analyses lent from multivariate statistics. In particular, we showed the advantages of principal component analysis (PCA) on monopolar high-density EMG (HD-EMG) over conventional electrode configurations. In the present study, we further improve force estimates by exploiting the correlation structure of the HD-EMG via independent component analysis (ICA). HD-EMG from the triceps brachii muscle and the extension force of the elbow were measured in 11 subjects. The root mean square difference (RMSD) and correlation coefficients between predicted and measured force were determined. Relative to using the monopolar EMG data, PCA yielded a 40% reduction in RMSD. ICA yielded a significant further reduction of up to 13% RMSD. Since ICA improved the PCA-based estimates, the independent structure of EMG signals appears to contain relevant additional information for the prediction of muscle force from surface HD-EMG. © 2007 IEEE.
机译:从表面肌电图(EMG)进行准确的力预测在生物力学和运动学方面构成了重要的方法论挑战。在以前的研究中(Staudenmann,2006),我们基于多元统计分析得出的力估计值进行了说明。特别是,我们展示了单极高密度肌电图(HD-EMG)上优于常规电极配置的主成分分析(PCA)的优势。在本研究中,我们通过独立分量分析(ICA),通过利用HD-EMG的相关结构来进一步改进力估计。在11名受试者中测量了肱三头肌的HD-EMG和肘部的伸展力。确定了预测力和测量力之间的均方根差(RMSD)和相关系数。相对于使用单极EMG数据,PCA可使RMSD降低40%。 ICA显着进一步降低了高达13%的RMSD。由于ICA改进了基于PCA的估计,因此EMG信号的独立结构似乎包含有关从表面HD-EMG预测肌肉力量的相关附加信息。 ©2007 IEEE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号