首页> 外文OA文献 >Analysis of time integration methods for the compressible two-fluid model for pipe flow simulations
【2h】

Analysis of time integration methods for the compressible two-fluid model for pipe flow simulations

机译:用于管道流动模拟的可压缩双流体模型的时间积分方法分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

textabstractIn this paper we analyse different time integration methods for the two-fluid model and propose the BDF2 method as the preferred choice to simulate transient compressible multiphase flow in pipelines. Compared to the prevailing Backward Euler method, the BDF2 scheme has a significantly better accuracy (second order) while retaining the important property of unconditional linear stability (A-stability). In addition, it is capable of damping unresolved frequencies such as acoustic waves present in the compressible model (L-stability), opposite to the commonly used Crank–Nicolson method. The stability properties of the two-fluid model and of several discretizations in space and time have been investigated by eigenvalue analysis of the continuous equations, of the semi-discrete equations, and of the fully discrete equations. A method for performing an automatic von Neumann stability analysis is proposed that obtains the growth rate of the discretization methods without requiring symbolic manipulations and that can be applied without detailed knowledge of the source code. The strong performance of BDF2 is illustrated via several test cases related to the Kelvin–Helmholtz instability. A novel concept called Discrete Flow Pattern Map (DFPM) is introduced which describes the effective well-posed unstable flow regime as determined by the discretization method. Backward Euler introduces so much numerical diffusion that the theoretically well-posed unstable regime becomes numerically stable (at practical grid and timestep resolution). BDF2 accurately identifies the stability boundary, and reveals that in the nonlinear regime ill-posedness can occur when starting from well-posed unstable solutions. The well-posed unstable regime obtained in nonlinear simulations is therefore in practice much smaller than the theoretical one, which might severely limit the application of the two-fluid model for simulating the transition from stratified flow to slug flow. This should be taken very seriously into account when interpreting results from any slug-capturing simulations.
机译:本文针对双流体模型分析了不同的时间积分方法,并提出了BDF2方法作为模拟管道中瞬态可压缩多相流的首选方法。与流行的Backward Euler方法相比,BDF2方案具有更高的精度(二阶),同时保留了无条件线性稳定性(A稳定性)的重要属性。此外,与通常使用的Crank–Nicolson方法相反,它能够衰减诸如可压缩模型中存在的声波之类的未解析频率(L稳定性)。通过对连续方程,半离散方程和完全离散方程的特征值分析,研究了双流体模型的稳定性和时空离散的稳定性。提出了一种执行自动冯·诺依曼稳定性分析的方法,该方法无需符号操作即可获得离散化方法的增长率,并且无需详细了解源代码即可应用。通过与Kelvin-Helmholtz不稳定性相关的几个测试案例可以说明BDF2的强大性能。引入了一种称为离散流模式图(DFPM)的新颖概念,该概念描述了由离散化方法确定的有效的适定不稳定流态。向后的Euler引入了太多的数值扩散,以至于理论上合理定位的不稳定状态在数值上变得稳定(在实际网格和时间步分辨率下)。 BDF2准确地确定了稳定性边界,并揭示了在非线性状态中,从适当摆放的不稳定解开始时会出现不适摆。因此,在非线性仿真中获得的状态良好的不稳定状态实际上要比理论值小得多,这可能会严重限制使用双流体模型来模拟从分层流向段塞流的过渡。在解释任何捕获段塞模拟的结果时,应该非常考虑这一点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号