首页> 外文OA文献 >Design of a non-linear contro ller to track de maximum power point of photovoltaic systems in electrical power systems with distributed generation
【2h】

Design of a non-linear contro ller to track de maximum power point of photovoltaic systems in electrical power systems with distributed generation

机译:设计用于跟踪分布式发电的电力系统中光伏系统的最大功率点的非线性控制器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This Doctoral thesis work is focused on the non-linear backstepping control of a buck-boost power converter and DC/AC power converter to track the maximum power point in PV systems and transfer the power to the electrical network.First, a backstepping control has been implemented to regulate the PV array output voltage in simulation to achieve the maximum power point. Forthat, a grid-connected PV system that consists of a PV array, a buck-boost converter, a DC/AC converter and a load has been modeled in Matlab-Simulink. Then, the designed backstepping controller is implemented in the system. The backstepping control is based on Lyapunov functions guaranteeing the locally stability of the system. This control is robust and tests have been carried out to validate its performance.Once the proposed control is verified in simulation, the method has been proved in an experimental platform. In this case, the experimental platform consists of a commercial PV module, a built buck-boost converter and a DC load to test the backstepping controller in the DC/DC converter. The experiments carried out validate the performance of the proposed control. The voltage that provides the maximum power point is always achieved under changeable environmental conditions, testing the robustness of the control.Finally, the non-linear backstepping controller is proposed to control the DC/AC power converter in an experimental platform, including the connection to the grid. Thus, backstepping controllers are obtained for distributed hybrid photovoltaic (PV) power supplies of telecommunication equipment. The grid-connected PV system contains the PV array, the built DC-DC buck-boost converters linked to single-phase inverters and telecom equipment as loads. The backstepping approach is robust and able to cope with the grid non-linearity and uncertainties, providing DC input current and voltage controllers for the buck-boost converter to track the PV panel maximum power point, regulating the PV output DC voltage to extract maximum power; unity power factor sinusoidal AC smart-grid inverter currents and constant DC link voltages suited for telecom equipment; and inverter bidirectional power transfer. Experimental results are obtained from a lab set-up controlled by one low- cost dsPIC. Results show the controllers guarantee maximum power transfer to the telecom equipment/AC grid, ensuring steady DC link voltage while absorbing/injecting low harmonic distortion current into the smart-grid.A modification of the backstepping control has been also proposed, an adaptive backstepping controller. This non-linear control also tracks the maximum power point regulating the buck-boost converter input voltage regardless of the parameter values of the DC/DC converter.Apart from the proposed algorithms, other MPPT algorithms have been implemented in order to compare the results of different techniques. A neuro-fuzzy system with fuzzy logic MPPT control is designed and then it is compared with the P&O algorithm, the PI control and the proposed backstepping control.Finally, the research work about the PV system control under partial shading conditions using artificial vision with backstepping control is sent to a paper, being in revision at this moment.Additional system performance related with power quality has been proposed. A PV active power line conditioner is designed to transfer the maximum power to the electrical network and to compensate the reactive power and the non-linear loads. Besides, the use of switching output reactances is proposed to improve the compensation of a shunt active power filter. Finally, two power indexes have been tested in a distributed network, the Load Characterization Index (LCI) that identifies linear and non-linear loads in the power systems and the Unbalance Current Ratio (UCR) that assigns the responsibility for system unbalance to load and source sides.
机译:该博士论文的工作重点是降压-升压电源转换器和DC / AC电源转换器的非线性反推控制,以跟踪光伏系统中的最大功率点并将功率传输到电网。已实现在仿真中调节PV阵列输出电压以实现最大功率点。为此,已经在Matlab-Simulink中对由光伏阵列,降压-升压转换器,DC / AC转换器和负载组成的并网光伏系统进行了建模。然后,在系统中实现设计的反推控制器。反推控制基于Lyapunov功能,可确保系统的局部稳定性。该控件具有鲁棒性,并进行了测试以验证其性能。一旦在仿真中验证了所提出的控件,该方法已在实验平台上得到了证明。在这种情况下,实验平台包括一个商用PV模块,一个内置的升降压转换器和一个直流负载,以测试DC / DC转换器中的反推控制器。进行的实验验证了所提出控制的性能。始终可以在变化的环境条件下获得提供最大功率点的电压,从而测试控制的鲁棒性。最后,提出了非线性反步控制器来控制实验平台中的DC / AC电源转换器,包括连接至网格。因此,获得了用于电信设备的分布式混合光伏(PV)电源的反推控制器。并网光伏系统包含光伏阵列,与负载作为单相逆变器和电信设备相连的内置DC-DC降压-升压转换器。反步方法是鲁棒的,能够应对电网的非线性和不确定性,为降压-升压转换器提供直流输入电流和电压控制器,以跟踪光伏电池板的最大功率点,调节光伏输出直流电压以提取最大功率;适用于电信设备的统一功率因数正弦交流智能电网逆变器电流和恒定直流链路电压;和逆变器双向功率传输。实验结果是从一个由低成本dsPIC控制的实验室中获得的。结果表明,该控制器可确保最大程度地向电信设备/ AC电网传输功率,确保稳定的DC链路电压,同时吸收/向智能电网中注入低谐波失真电流。 。这种非线性控制还跟踪调节降压-升压转换器输入电压的最大功率点,而与DC / DC转换器的参数值无关。除提出的算法外,还实施了其他MPPT算法以比较结果。不同的技术。设计了具有模糊逻辑MPPT控制的神经模糊系统,然后将其与P&O算法,PI控制和拟议的反推控制进行了比较。最后,研究了在部分阴影条件下利用人工视觉与反推进行光伏系统控制的研究工作。目前,正在将控制权发送至文件,此文件正在修订中。已提出了与电能质量相关的其他系统性能。 PV有功功率线路调节器旨在将最大功率传递到电网,并补偿无功功率和非线性负载。此外,建议使用开关输出电抗来改善并联有源功率滤波器的补偿。最后,在分布式网络中测试了两个功率指标:负载特征指标(LCI),用于识别电力系统中的线性和非线性负载;不平衡电流比(UCR),用于将系统不平衡的责任分配给负载和负载。源方面。

著录项

  • 作者

    Delgado Martín Aránzazu;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号