首页> 外文OA文献 >Predicting change impact in architecture design with Bayesian belief networks
【2h】

Predicting change impact in architecture design with Bayesian belief networks

机译:用贝叶斯信念网络预测建筑设计中的变化影响

摘要

Research into design rationale in the past has focused on the representation of reasons and has omitted the connections between design rationales and design artefacts. Without such connections, designers and architects cannot easily assess how changing requirements or designs may affect the system. In this paper, we introduce a model called Architecture Rationale and Element Linkage (AREL) to represent the causal relationship between architecture elements and decisions. We further model AREL as a Bayesian Belief Network (BBN) to capture the probabilistic relationships between architecture elements and decisions in an architecture design model. Such probabilistic modelling enables architects to quantitatively predict and diagnose impact of change when part of the requirements or designs are changing. Using a partial design of a cheque image processing system, we illustrate how AREL is used to represent the decision model and how BBN is used to predict and diagnose change in the architecture design. We use a UML tool to capture the AREL model and a BBN tool to compute the probabilities of change impact.
机译:过去,对设计原理的研究集中在原因的表示上,并且省略了设计原理与设计伪像之间的联系。没有这种联系,设计人员和架构师就无法轻松评估不断变化的需求或设计可能如何影响系统。在本文中,我们引入了一个称为体系结构基本原理和元素链接(AREL)的模型来表示体系结构元素与决策之间的因果关系。我们进一步将AREL建模为贝叶斯信念网络(BBN),以捕获架构设计模型中架构元素与决策之间的概率关系。当部分需求或设计发生变化时,这种概率建模使架构师能够定量预测和诊断变化的影响。通过使用支票图像处理系统的局部设计,我们说明了如何使用AREL来表示决策模型,以及如何使用BBN来预测和诊断体系结构设计中的变化。我们使用UML工具捕获AREL模型,并使用BBN工具计算变更影响的概率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号