首页> 外文OA文献 >A Correlation Network Model for Structural Health Monitoring and Analyzing Safety Issues in Civil Infrastructures
【2h】

A Correlation Network Model for Structural Health Monitoring and Analyzing Safety Issues in Civil Infrastructures

机译:结构健康监测与分析民用基础设施安全问题的相关网络模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Structural Health monitoring (SHM) is essential to analyze safety issues in civil infrastructures and bridges. With the recent advancements in sensor technology, SHM is moving from the occasional or periodic maintenance checks to continuous monitoring. While each technique, whether it is utilizing assessment or sensors, has their advantages and disadvantages, we propose a method to predict infrastructure health based on representing data streams from multiple sources into a graph model that is more scaleable, flexible and efficient than relational or unstructured databases. The proposed approach is centered on the idea of intelligently determining similarities among various structures based on population analysis that can then be visualized and carefully studied. If some “unhealthy” structures are identified through assessments or sensor readings, the model is capable of finding additional structures with similar parameters that need to be carefully inspected. This can save time, cost and effort in inspection cycles, provide increased readiness, help to prioritize inspections, and in general lead to safer, more reliable infrastructures.
机译:结构健康监测(SHM)对于分析民用基础设施和桥梁中的安全问题至关重要。随着传感器技术的最新发展,SHM正在从偶尔或定期的维护检查过渡到连续监视。尽管每种技术(无论是利用评估还是传感器)都有其优点和缺点,但我们提出了一种基于将来自多个源的数据流表示为关系模型或非结构化图模型更可伸缩,灵活和高效的图模型来预测基础结构运行状况的方法数据库。所提出的方法以基于人口分析智能确定各种结构之间相似性的想法为中心,然后可以对其进行可视化和仔细研究。如果通过评估或传感器读数识别出某些“不健康”的结构,则该模型能够找到具有类似参数的其他结构,需要仔细检查。这样可以节省检查周期中的时间,成本和精力,提供更多的准备状态,有助于对检查进行优先排序,并且总体上可以提供更安全,更可靠的基础架构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号