首页> 外文OA文献 >Interoperability of wireless communication technologies in hybrid networks : evaluation of end-to-end interoperability issues and quality of service requirements
【2h】

Interoperability of wireless communication technologies in hybrid networks : evaluation of end-to-end interoperability issues and quality of service requirements

机译:混合网络中无线通信技术的互操作性:端到端互操作性问题和服务质量要求的评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hybrid Networks employing wireless communication technologies have nowadays brought closer the vision of communication “anywhere, any time with anyone”. Such communication technologies consist of various standards, protocols, architectures, characteristics, models, devices, modulation and coding techniques. All these different technologies naturally may share some common characteristics, but there are also many important differences. New advances in these technologies are emerging very rapidly, with the advent of new models, characteristics, protocols and architectures. This rapid evolution imposes many challenges and issues to be addressed, and of particular importance are the interoperability issues of the following wireless technologies: Wireless Fidelity (Wi-Fi) IEEE802.11, Worldwide Interoperability for Microwave Access (WiMAX) IEEE 802.16, Single Channel per Carrier (SCPC), Digital Video Broadcasting of Satellite (DVB-S/DVB-S2), and Digital Video Broadcasting Return Channel through Satellite (DVB-RCS). Due to the differences amongst wireless technologies, these technologies do not generally interoperate easily with each other because of various interoperability and Quality of Service (QoS) issues. The aim of this study is to assess and investigate end-to-end interoperability issues and QoS requirements, such as bandwidth, delays, jitter, latency, packet loss, throughput, TCP performance, UDP performance, unicast and multicast services and availability, on hybrid wireless communication networks (employing both satellite broadband and terrestrial wireless technologies). The thesis provides an introduction to wireless communication technologies followed by a review of previous research studies on Hybrid Networks (both satellite and terrestrial wireless technologies, particularly Wi-Fi, WiMAX, DVB-RCS, and SCPC). Previous studies have discussed Wi-Fi, WiMAX, DVB-RCS, SCPC and 3G technologies and their standards as well as their properties and characteristics, such as operating frequency, bandwidth, data rate, basic configuration, coverage, power, interference, social issues, security problems, physical and MAC layer design and development issues. Although some previous studies provide valuable contributions to this area of research, they are limited to link layer characteristics, TCP performance, delay, bandwidth, capacity, data rate, and throughput. None of the studies cover all aspects of end-to-end interoperability issues and QoS requirements; such as bandwidth, delay, jitter, latency, packet loss, link performance, TCP and UDP performance, unicast and multicast performance, at end-to-end level, on Hybrid wireless networks. Interoperability issues are discussed in detail and a comparison of the different technologies and protocols was done using appropriate testing tools, assessing various performance measures including: bandwidth, delay, jitter, latency, packet loss, throughput and availability testing. The standards, protocol suite/ models and architectures for Wi-Fi, WiMAX, DVB-RCS, SCPC, alongside with different platforms and applications, are discussed and compared. Using a robust approach, which includes a new testing methodology and a generic test plan, the testing was conducted using various realistic test scenarios on real networks, comprising variable numbers and types of nodes. The data, traces, packets, and files were captured from various live scenarios and sites. The test results were analysed in order to measure and compare the characteristics of wireless technologies, devices, protocols and applications. The motivation of this research is to study all the end-to-end interoperability issues and Quality of Service requirements for rapidly growing Hybrid Networks in a comprehensive and systematic way. The significance of this research is that it is based on a comprehensive and systematic investigation of issues and facts, instead of hypothetical ideas/scenarios or simulations, which informed the design of a test methodology for empirical data gathering by real network testing, suitable for the measurement of hybrid network single-link or end-to-end issues using proven test tools. This systematic investigation of the issues encompasses an extensive series of tests measuring delay, jitter, packet loss, bandwidth, throughput, availability, performance of audio and video session, multicast and unicast performance, and stress testing. This testing covers most common test scenarios in hybrid networks and gives recommendations in achieving good end-to-end interoperability and QoS in hybrid networks. Contributions of study include the identification of gaps in the research, a description of interoperability issues, a comparison of most common test tools, the development of a generic test plan, a new testing process and methodology, analysis and network design recommendations for end-to-end interoperability issues and QoS requirements. This covers the complete cycle of this research. It is found that UDP is more suitable for hybrid wireless network as compared to TCP, particularly for the demanding applications considered, since TCP presents significant problems for multimedia and live traffic which requires strict QoS requirements on delay, jitter, packet loss and bandwidth. The main bottleneck for satellite communication is the delay of approximately 600 to 680 ms due to the long distance factor (and the finite speed of light) when communicating over geostationary satellites. The delay and packet loss can be controlled using various methods, such as traffic classification, traffic prioritization, congestion control, buffer management, using delay compensator, protocol compensator, developing automatic request technique, flow scheduling, and bandwidth allocation.
机译:如今,采用无线通信技术的混合网络已使“随时随地与任何人”通信的愿景更加紧密。这样的通信技术包括各种标准,协议,体系结构,特性,模型,设备,调制和编码技术。所有这些不同的技术自然可以具有一些共同的特征,但是也存在许多重要的差异。随着新模型,特征,协议和体系结构的出现,这些技术的新进展正在迅速崛起。这种快速发展带来了许多挑战和需要解决的问题,并且特别重要的是以下无线技术的互操作性问题:无线保真(Wi-Fi)IEEE802.11,全球微波访问互操作性(WiMAX)IEEE 802.16,单通道运营商(SCPC),卫星数字视频广播(DVB-S / DVB-S2)和通过卫星的数字视频广播返回信道(DVB-RCS)。由于无线技术之间的差异,由于各种互操作性和服务质量(QoS)问题,这些技术通常不容易彼此互操作。这项研究的目的是评估和研究端到端的互操作性问题和QoS要求,例如带宽,延迟,抖动,延迟,数据包丢失,吞吐量,TCP性能,UDP性能,单播和多播服务以及可用性。混合无线通信网络(同时使用卫星宽带和地面无线技术)。本文介绍了无线通信技术,然后回顾了以前对混合网络(卫星和地面无线技术,特别是Wi-Fi,WiMAX,DVB-RCS和SCPC)的研究。先前的研究讨论了Wi-Fi,WiMAX,DVB-RCS,SCPC和3G技术及其标准以及它们的特性和特征,例如工作频率,带宽,数据速率,基本配置,覆盖范围,功率,干扰,社会问题。 ,安全性问题,物理和MAC层设计和开发问题。尽管一些先前的研究为该领域的研究提供了有价值的贡献,但它们仅限于链路层特性,TCP性能,延迟,带宽,容量,数据速率和吞吐量。这些研究都没有涉及端到端互操作性问题和QoS要求的所有方面。例如混合无线网络上端到端级别的带宽,延迟,抖动,延迟,数据包丢失,链路性能,TCP和UDP性能,单播和多播性能。将详细讨论互操作性问题,并使用适当的测试工具对不同技术和协议进行比较,评估各种性能指标,包括:带宽,延迟,抖动,延迟,数据包丢失,吞吐量和可用性测试。讨论和比较了Wi-Fi,WiMAX,DVB-RCS,SCPC的标准,协议套件/模型和体系结构,以及不同的平台和应用程序。使用包括新测试方法和通用测试计划在内的可靠方法,可以在真实网络上使用各种实际测试场景来进行测试,包括可变数量和类型的节点。数据,跟踪,数据包和文件是从各种实时场景和站点中捕获的。分析测试结果以测量和比较无线技术,设备,协议和应用程序的特征。这项研究的目的是全面而系统地研究快速增长的混合网络的所有端到端互操作性问题和服务质量要求。这项研究的意义在于,它基于对问题和事实的全面而系统的调查,而不是假设的思想/场景或模拟,后者为通过真实网络测试收集经验数据的测试方法设计提供了依据,适用于使用成熟的测试工具来测量混合网络单链路或端到端问题。对这些问题的系统调查包括一系列广泛的测试,这些测试测量延迟,抖动,数据包丢失,带宽,吞吐量,可用性,音频和视频会话的性能,多播和单播性能以及压力测试。该测试涵盖了混合网络中最常见的测试场景,并提出了在混合网络中实现良好的端到端互操作性和QoS的建议。研究的贡献包括确定研究中的差距,描述互操作性问题,比较最常见的测试工具,制定通用测试计划,新的测试流程和方法,有关端到端互操作性问题和QoS要求的分析和网络设计建议。这涵盖了本研究的整个周期。已经发现,与TCP相比,UDP更适合于混合无线网络,特别是对于所考虑的苛刻应用程序,因为TCP为多媒体和实时业务带来了严重的问题,需要对延迟,抖动,分组丢失和带宽提出严格的QoS要求。卫星通信的主要瓶颈是由于在对地静止卫星上进行通信时的长距离因素(以及光速有限)而导致的大约600至680 ms的延迟。可以使用各种方法来控制延迟和数据包丢失,例如流量分类,流量优先级划分,拥塞控制,缓冲区管理,使用延迟补偿器,协议补偿器,开发自动请求技术,流调度和带宽分配。

著录项

  • 作者

    Stergioulas L; Abbasi Munir A;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号