首页> 外文OA文献 >Digital particle image velocimetry (DPIV) : systematic error analysis
【2h】

Digital particle image velocimetry (DPIV) : systematic error analysis

机译:数字粒子测速图像(DpIV):系统误差分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Digital Particle Image Velocimetry (DPIV) is a flow diagnostic technique that is able to provide velocity measurements within a fluid whilst also offering flow visualisation during analysis. Whole field velocity measurements are calculated by using cross-correlation algorithms to process sequential images of flow tracer particles recorded using a laser-camera system. This technique is capable of calculating velocity fields in both two and three dimensions and is the most widely used whole field measurement technique in flow diagnostics. With the advent of time-resolved DPIV it is now possible to resolve the 3D spatio-temporal dynamics of turbulent and transient flows as they develop over time. Minimising the systematic and random errors associated with the cross-correlation of flow images is essential in providing accurate quantitative results for DPIV. This research has explored a variety of cross-correlation algorithms and techniques developed to increase the accuracy of DPIV measurements. It is shown that these methods are unable to suppress either the inherent errors associated with the random distribution of particle images within each interrogation region or the background noise of an image. This has been achieved through a combination of both theoretical modelling and experimental verification for a uniform particle image displacement. The study demonstrates that normalising the correlation field by the signal strength that contributes to each point of the correlation field suppresses both the mean bias and RMS error. A further enhancement to this routine has lead to the development of a robust cross-correlation algorithm that is able to suppress the systematic errors associated to the random distribution of particle images and background noise.
机译:数字粒子图像测速(DPIV)是一种流量诊断技术,能够提供流体中的速度测量,同时在分析过程中也能提供流量可视化。通过使用互相关算法来处理使用激光摄像机系统记录的流动示踪剂颗粒的顺序图像,可以计算出整个场速度测量值。该技术能够计算二维和三维速度场,是流量诊断中使用最广泛的全场测量技术。随着时间分辨的DPIV的出现,现在可以解决湍流和瞬态流随时间发展的3D时空动态问题。在为DPIV提供准确的定量结果时,最小化与流图像互相关相关的系统误差和随机误差至关重要。这项研究探索了各种互相关算法和技术,以提高DPIV测量的准确性。结果表明,这些方法无法抑制与每个询问区域内的粒子图像随机分布相关的固有误差或图像的背景噪声。这是通过理论建模和实验验证相结合实现的,以实现均匀的粒子图像位移。研究表明,通过对相关场的每个点做出贡献的信号强度对相关场进行归一化,可以抑制平均偏差和RMS误差。对该程序的进一步增强导致了鲁棒互相关算法的发展,该算法能够抑制与粒子图像和背景噪声的随机分布相关的系统误差。

著录项

  • 作者

    Putman Edward R J;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号