首页> 外文OA文献 >Analysing web-based malware behaviour through client honeypots
【2h】

Analysing web-based malware behaviour through client honeypots

机译:通过客户端蜜罐分析基于Web的恶意软件行为

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

With an increase in the use of the internet, there has been a rise in the number of attacks on servers. These attacks can be successfully defended against using security technologies such as firewalls, IDS and anti-virus software, so attackers have developed new methods to spread their malicious code by using web pages, which can affect many more victims than the traditional approach. The attackers now use these websites to threaten users without the user’s knowledge or permission. The defence against such websites is less effective than traditional security products meaning the attackers have the advantage of being able to target a greater number of users. Malicious web pages attack users through their web browsers and the attack can occur even if the user only visits the web page; this type of attack is called a drive-by download attack. This dissertation explores how web-based attacks work and how users can be protected from this type of attack based on the behaviour of a remote web server. We propose a system that is based on the use of client Honeypot technology. The client Honeypot is able to scan malicious web pages based on their behaviour and can therefore work as an anomaly detection system. The proposed system has three main models: state machine, clustering and prediction models. All these three models work together in order to protect users from known and unknown web-based attacks. This research demonstrates the challenges faced by end users and how the attacker can easily target systems using drive-by download attacks. In this dissertation we discuss how the proposed system works and the research challenges that we are trying to solve, such as how to group web-based attacks into behaviour groups, how to avoid attempts at obfuscation used by attackers and how to predict future malicious behaviour for a given web-based attack based on its behaviour in real time. Finally, we have demonstrate how the proposed system will work by implementing a prototype application and conducting a number of experiments to show how we were able to model, cluster and predict web-based attacks based on their behaviour. The experiment data was collected randomly from online blacklist websites.
机译:随着互联网使用的增加,对服务器的攻击数量也在增加。可以使用防火墙,IDS和防病毒软件等安全技术来成功防御这些攻击,因此攻击者已经开发出新的方法来通过使用网页来传播其恶意代码,与传统方法相比,这种方法可以影响更多的受害者。攻击者现在利用这些网站在用户不知情或未经许可的情况下威胁用户。针对此类网站的防御没有传统的安全产品有效,这意味着攻击者具有能够针对更多用户的优势。恶意网页通过其Web浏览器攻击用户,即使用户仅访问该网页也可能发生攻击;这种类型的攻击称为“偷渡式下载”攻击。本文探讨了基于Web的攻击如何工作以及如何基于远程Web服务器的行为保护用户免受此类攻击。我们提出一种基于客户端Honeypot技术使用的系统。客户端Honeypot能够根据恶意网页的行为对其进行扫描,因此可以用作异常检测系统。提出的系统具有三个主要模型:状态机,聚类和预测模型。这三种模型都可以协同工作,以保护用户免受已知和未知的基于Web的攻击。这项研究证明了最终用户所面临的挑战,以及攻击者如何能够通过直接下载攻击轻松地将系统作为目标。在本文中,我们讨论了所提出的系统如何工作以及我们正在尝试解决的研究挑战,例如如何将基于Web的攻击分为行为组,如何避免攻击者进行混淆的尝试以及如何预测未来的恶意行为。针对特定的基于Web的攻击基于其行为进行实时分析。最后,我们通过实现原型应用程序并进行了许多实验来演示所提议的系统将如何工作,以展示我们如何能够基于其行为对网络攻击进行建模,聚类和预测。实验数据是从在线黑名单网站上随机收集的。

著录项

  • 作者

    Alosefer Yaser;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号