首页> 外文OA文献 >Low severity Fischer-Tropsch synthesis for the production of synthetic hydrocarbon fuels
【2h】

Low severity Fischer-Tropsch synthesis for the production of synthetic hydrocarbon fuels

机译:用于生产合成烃燃料的低苛刻度Fischer-Tropsch合成

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Currently, the main source for the production of liquid transportation fuels is petroleum, the continued use of which faces many challenges including depleting oil reserves, significant oil price rises, and environmental concerns over global warming which is widely believed to be due to fossil fuel derived CO2 emissions and other greenhouse gases. In this respect, lignocellulosic or plant biomass is a particularly interesting resource as it is the only renewable source of organic carbon that can be converted into liquid transportation fuels. The gasification of biomass produces syngas which can then be converted into synthetic liquid hydrocarbon fuels by means of the Fischer-Tropsch (FT) synthesis. This process has been widely considered as an attractive option for producing clean liquid hydrocarbon fuels from biomass that have been identified as promising alternatives to conventional fossil fuels like diesel and kerosene. The resulting product composition in FT synthesis is influenced by the type of catalyst and the reaction conditions that are used in the process. One of the issues facing this conversion process is the development of a technology that can be scaled down to match the scattered nature of biomass resources, including lower operating pressures, without compromising liquid composition. The primary aims of this work were to experimentally explore FT synthesis at low pressures for the purpose of process down-scaling and cost reduction, and to investigate the potential for obtaining an intermediate FT synthetic crude liquid product that can be integrated into existing refineries under the range of process conditions employed. Two different fixed-bed micro-reactors were used for FT synthesis; a 2cm3 reactor at the University of Rio de Janeiro (UFRJ) and a 20cm3 reactor at Aston University. The experimental work firstly involved the selection of a suitable catalyst from three that were available. Secondly, a parameter study was carried out on the 20cm3 reactor using the selected catalyst to investigate the influence of reactor temperature, reactor pressure, space velocity, the H2/CO molar ratio in the feed syngas and catalyst loading on the reaction performance measured as CO conversion, catalyst stability, product distribution, product yields and liquid hydrocarbon product composition. From this parameter study a set of preferred operating conditions was identified for low pressure FT synthesis. The three catalysts were characterized using BET, XRD, TPR and SEM. The catalyst selected was an unpromoted Co/Al2O3 catalyst. FT synthesis runs on the 20cm3 reactor at Aston were conducted for 48 hours. Permanent gases and light hydrocarbons (C1-C5) were analysed in an online GC-TCD/FID at hourly intervals. The liquid hydrocarbons collected were analyzed offline using GC-MS for determination of fuel composition. The parameter study showed that CO conversion and liquid hydrocarbon yields increase with increasing reactor pressure up to around 8 bar, above which the effect of pressure is small. The parameters that had the most significant influence on CO conversion, product selectivity and liquid hydrocarbon yields were reactor temperature and catalyst loading. The preferred reaction conditions identified for this research were: T = 230ºC, P = 10 bar, H2/CO = 2.0, WHSV = 2.2 h-1, and catalyst loading = 2.0g. Operation in the low range of pressures studied resulted in low CO conversions and liquid hydrocarbon yields, indicating that low pressure BTL-FT operation may not be industrially viable as the trade off in lower CO conversions and once-through liquid hydrocarbon product yields has to be carefully weighed against the potential cost savings resulting from process operation at lower pressures.
机译:当前,生产液体运输燃料的主要来源是石油,石油的继续使用面临许多挑战,包括石油储量枯竭,石油价格大幅上涨以及全球变暖对环境的担忧,普遍认为这是由于化石燃料的产生二氧化碳排放量和其他温室气体。在这方面,木质纤维素或植物生物质是特别有趣的资源,因为它是唯一可转化为液体运输燃料的有机碳可再生资源。生物质的气化产生合成气,然后可以通过费-托(FT)合成将其转化为合成液态烃燃料。该方法已被广泛认为是从生物质生产清洁液态烃类燃料的有吸引力的选择,这些生物质已被视为是常规化石燃料(如柴油和煤油)的有希望的替代品。 FT合成中所得的产物组成受催化剂类型和过程中使用的反应条件的影响。转化过程面临的问题之一是技术的发展,可以按比例缩小以匹配生物质资源的分散性质,包括较低的工作压力,而又不损害液体成分。这项工作的主要目的是在实验上探索低压FT合成以降低工艺规模和降低成本,并研究获得中间FT合成粗液产品的潜力,该产品可以整合到现有的炼油厂中。使用的工艺条件范围。 FT合成使用了两种不同的固定床微反应器。里约热内卢大学(UFRJ)的2立方厘米反应堆和阿斯顿大学的20立方厘米反应堆。实验工作首先涉及从三种可用的催化剂中选择合适的催化剂。其次,使用选定的催化剂对20cm3反应器进行了参数研究,以研究反应器温度,反应器压力,空速,进料合成气中的H2 / CO摩尔比和催化剂负载量对以CO衡量的反应性能的影响。转化率,催化剂稳定性,产物分布,产物收率和液态烃产物组成。根据该参数研究,确定了低压FT合成的一组优选操作条件。使用BET,XRD,TPR和SEM表征了这三种催化剂。选择的催化剂是未助催化剂的Co / Al2O3催化剂。 FT合成在阿斯顿20立方厘米反应器上进行了48小时。每小时在在线GC-TCD / FID中分析永久性气体和轻烃(C1-C5)。使用GC-MS对收集的液态烃进行离线分析,以确定燃料成分。参数研究表明,CO转化率和液态烃产率随反应器压力的增加而增加,直至约8 bar,在此压力之上,压力的影响很小。对CO转化率,产物选择性和液态烃收率影响最大的参数是反应器温度和催化剂负载量。为该研究确定的优选反应条件为:T =230ºC,P = 10 bar,H2 / CO = 2.0,WHSV = 2.2 h-1,催化剂负载= 2.0g。在所研究的低压力范围内操作导致较低的CO转化率和液态烃产率,这表明低压BTL-FT操作可能在工业上不可行,因为必须在较低的CO转化率和直流液化烃产品产率之间进行权衡仔细权衡了在较低压力下因过程操作而可能节省的成本。

著录项

  • 作者

    Doss Tamer;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号