首页> 外文OA文献 >Adaptive wing structures for aeroelastic drag reduction and loads alleviation
【2h】

Adaptive wing structures for aeroelastic drag reduction and loads alleviation

机译:用于气动弹性减阻和减载的自适应机翼结构

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An investigation into two distinct novel adaptive structures concepts is performed with a view to improving the aerodynamic efficiency of aircraft wings.The main focus of the work is on the development of a rotating spars concept that enables the adaptive aeroelastic shape control of aircraft wings in order to reduce drag. By altering the orientation of the internal wing structure, it becomes possible to control the flexural and torsional stiffnesses of the wing, as well as the position of the elastic axis. It follows then that control of the aeroelastic deformation is also possible. Consequently, the aerodynamic performance can be tailored, and more specifically the lift-to-drag ratio can be maximised through continuous adjustment of the structure.To gain a thorough understanding of the effect of the concept on a wing, an assumed modes static aeroelastic model is developed, and studies are performed using this. These studies establish guidelines with regards to the effective design of a wing incorporating the rotating spars concept. The findings of these studies are then used to establish a baseline design for a wind tunnel model. A finite element model of this is constructed and aeroelastic analyses are used to improve the model and arrive at the final experimental wing design. The wind tunnel tests confirm analytical trends and the robustness of an approach to automaticallyadapt the structure to maintain an aerodynamic performance objective.The remainder of the work investigates the application of an all-moving wing tip device with an adaptive torsional stiffness attachment as a passive loads alleviation system. Through consideration of the attachment stiffness and position, it is possible to tune the device throughout flight in order to minimise the loads that are introduced into the aircraft structure in response to a gust or manoeuvre. A dynamic aeroelastic wing model incorporating the device is developed and used to perform parameter studies; this gives an insight into the sizing and placement of the device. Next, a finite element representation of a conceptual High Altitude Long Endurance (HALE) aircraft is used as a baseline platform for the device. Aeroelastic analyses are performed for the baseline and modified models to investigate the effect of the attachment stiffness and position on the gust response and aeroelastic stability of the system. The reduced loading within thestructure of the modified aircraft then enables the model to be optimised in order to reduce the mass of the aircraft.
机译:为了提高飞机机翼的空气动力学效率,对两种不同的新型自适应结构概念进行了研究。研究的主要重点是旋转翼梁概念的发展,该概念使飞机机翼的自适应气动弹性形状控制成为可能。减少阻力。通过改变内部机翼结构的方向,可以控制机翼的弯曲刚度和扭转刚度以及弹性轴的位置。因此,也可以控制气动弹性变形。因此,可以调整空气动力学性能,更具体地说,可以通过不断调整结构来最大程度提高升阻比。为全面了解该概念对机翼的影响,请使用假定模式的静态空气弹性模型被开发出来,并以此进行研究。这些研究建立了关于结合旋转翼梁概念的机翼有效设计的指导原则。然后将这些研究的结果用于建立风洞模型的基线设计。构造了一个有限元模型,并使用气动弹性分析对模型进行了改进,并得出了最终的实验机翼设计。风洞测试证实了分析趋势和自动适应结构以维持空气动力性能目标的方法的鲁棒性。其余工作研究了具有自适应扭转刚度附件的全动翼尖装置作为被动载荷的应用缓解系统。通过考虑附件的刚度和位置,可以在整个飞行过程中调整设备,以使响应阵风或操纵而引入飞机结构的载荷最小。开发了包含该装置的动态气动弹性机翼模型,并将其用于进行参数研究;这可以深入了解设备的尺寸和位置。接下来,将概念性高空长期耐力(HALE)飞机的有限元表示形式用作该设备的基准平台。对基线和修改后的模型进行了气动弹性分析,以研究附着刚度和位置对阵风响应和系统气动弹性稳定性的影响。修改后的飞机的结构内减小的载荷然后使得模型能够被优化以便减少飞机的质量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号