首页> 外文OA文献 >Formation waters in petroleum reservoirs : their controls and applications
【2h】

Formation waters in petroleum reservoirs : their controls and applications

机译:石油储层中的地层水:其控制和应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Abundant water chemistry analyses from nine different locations (predominantly petroleum reservoirs) on five continents were evaluated. This information, together with local mineralogy, depth and temperature relations provided a sound basis from which to investigate the most important controls on formation water composition. In particular, the detailed study of two very different hydrocarbon reservoir case studies (the Central US coalbed methane reservoir, the San Juan Basin and the North Sea oilfield Miller) provided an insight not only into the fundamental controls on formation water composition, but also into the effects of active oilfield development on systems that are very sensitive to change on rapid timescales. The geochemistry of San Juan waters is controlled by the introduction of bicarbonate through carbonate dissolution and methane/coal oxidation leading to leaching of Na-bearing clay minerals, and by ion exchange on clay minerals and dilution by meteoric waters in certain locations. The time series of produced waters from Miller enabled detailed study of fluid mixing in the field and the physical, chemical and thermodynamic response of the system to the injection of seawater. Changes occur in the concentrations of many water components through time that cannot be explained by linear mixing between formation water and injected water and require dissolution or precipitation reactions to have occurred between injection and production sites. For example Ba, and SO4 concentrations are affected by equilibrium with barite and what is likely to be sulphate reduction. Also, excess Si present in the fluid is due to dissolution of the silicate phases in the reservoir, and demonstrates reactions between silicate minerals occur on a fast enough timescale to buffer the pH of the water. Integration of all available data shows consistent patterns of behaviour, which implicate mineral-fluid interactions in the subsurface as a major control on formation water chemistry. For example, globally, Ca concentrations are shown to behave in one of three ways, all of which depend on water interaction with the host rock, be it silicate or carbonate, clastic or evaporite. Distinct trends arise for bicarbonate waters, brines derived by halite dissolution and formation brines that have evolved extensively with silicates. In addition, K concentrations are closely related to feldspar-clay equilibria and Mg concentrations are influenced predominantly by carbonate minerals with significant contribution from clays. It is likely that initial Ba concentration is related to interaction with K-feldspars and SO4 is controlled by equilibrium with sulphate mineral phases as well as by redox. A greater understanding of formation water chemistry leads to an improved perception of the importance of these systems in terms of both furthering scientific progress and the technological development of the oil and gas industry. In particular, produced water chemistry analyses from Miller were used to appraise and improve the most important aspects of both generic and specific reservoir models. A set of simple models emphasised the point that small variations in reservoir property parameters can have significant effects on model outputs, and thus the highlighted the importance of thorough reservoir characterisation, particularly permeability heterogeneity, capillary pressure and relative fluid permeabilities. Geochemical models of three different systems from the integrated database (the Alberta Basin, a Colombian onshore oilfield and an oilfield from offshore Gulf of Mexico) illustrate that reservoir rocks containing a wide variety of minerals are the most effective at limiting pH decrease following the injection of CO2 into the system. The geochemistry, in particular the salinity, of the formation water present also has a significant bearing on the processes that are likely to occur during CO2 sequestration.
机译:评估了来自五大洲九个不同位置(主要是石油储层)的大量水化学分析。这些信息以及当地的矿物学,深度和温度关系为研究地层水组成的最重要控制方法提供了良好的基础。特别是,对两个截然不同的碳氢化合物储层案例研究(美国中部煤层气储层,圣胡安盆地和北海油田米勒)的详细研究不仅提供了对地层水组成的基本控制的深刻见解,而且还为活跃的油田开发对快速变化的变化非常敏感的系统的影响。圣胡安水域的地球化学通过碳酸盐的溶解和甲烷/煤的氧化引入碳酸氢盐,从而导致含钠粘土矿物的浸出,以及粘土矿物上的离子交换和某些地方的陨石水稀释来控制。米勒的采出水按时间顺序排列,可以对野外流体混合以及系统对注入海水的物理,化学和热力学响应进行详细研究。随着时间的推移,许多水成分的浓度发生变化,这不能用地层水和注入水之间的线性混合来解释,并且需要在注入和生产地点之间发生溶解或沉淀反应。例如钡和二氧化硫的浓度受重晶石平衡以及硫酸盐还原的影响。同样,流体中存在的过量Si是由于储层中硅酸盐相的溶解所致,这表明硅酸盐矿物之间的反应发生在足够快的时间范围内,以缓冲水的pH值。所有可用数据的整合显示出一致的行为模式,这暗示着地下流体与矿物质的相互作用,是对地层水化学的主要控制。例如,在全球范围内,Ca浓度表现为三种方式之一,所有这些方式都取决于水与基质岩石的相互作用,无论是硅酸盐还是碳酸盐,碎屑岩或蒸发岩。碳酸氢盐水,由岩盐溶解产生的盐水和与硅酸盐一起大量演化的地层盐水出现了明显的趋势。另外,钾的浓度与长石-粘土的平衡密切相关,而镁的浓度主要受碳酸盐矿物的影响,而碳酸盐矿物的黏土贡献很大。最初的Ba浓度可能与与钾长石的相互作用有关,而SO4则通过与硫酸盐矿物相以及氧化还原的平衡来控制。从进一步推动科学进步和油气工业技术发展的角度出发,对地层水化学的更深入的了解将使人们对这些系统的重要性有了更好的认识。特别是,米勒的采出水化学分析被用于评估和改进通用和特定储层模型最重要的方面。一组简单的模型强调了一点,即储层物性参数的微小变化可能会对模型输出产生重大影响,因此强调了对储层进行全面表征(特别是渗透率非均质性,毛细管压力和相对流体渗透率)的重要性。综合数据库中的三种不同系统的地球化学模型(艾伯塔盆地,哥伦比亚陆上油田和墨西哥湾近海油田)表明,注入多种矿物后,含有多种矿物的储层岩石最能有效地限制pH的降低。二氧化碳进入系统。存在的地层水的地球化学,特别是盐度,也对二氧化碳封存过程中可能发生的过程有重要影响。

著录项

  • 作者

    Houston Stephanie Jane;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号