首页> 外文OA文献 >Microstructure property development in friction stir welds of aluminim based alloys
【2h】

Microstructure property development in friction stir welds of aluminim based alloys

机译:铝合金搅拌摩擦焊接头的组织性能研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Friction Stir Welding (FSW) is known to result in a complex microstructural development, with features that remain unexplained, such as: the formation of the onion rings structure. Moreover, various microstructural factors have been suggested to control the strength in Al-Mg AA5xxx welds. The influence of the basemetal microstructural parameters (e.g. grains, intermetallic particles, stored energy) on the microstructure-property development has not been previously investigated, and is the subject of the present work. To rationalise the microstructural and local strength (hardness) development, especially within the heat affected zone (HAZ), a simple and rapid 3-D heat transfer model was established to predict the thermal fields associated with FSW. This numerical model utilises the alternating direction implicit method to simulate the transient thermal cycle based on the process parameters, thermo-physical and thermo-mechanical properties of the material. The model was fitted for the friction coefficient and contact conductance between the sheet and the backing plate using experimental torque and force data, as well as in-situ thermocouple measurements for AA2xxx and AA5xxx welds. The model predictions were consistent with the microstructural and microhardness development in the welds. Gleeble thermal simulations showed that the heating rate during welding affects the recrystallisation start temperature, which could delay or speed up recrystallisation. In the thermo-mechanically affected zone (TMAZ), the onion rings structure was studied in several AA5xxx and AA2xxx welds. This follows a thorough microstructural investigation of the basemetals sheets prepared by direct chill and continuous casting, to establish the influence of the microstructural heterogeneity in the basemetal on the onion rings formation and the microstructural development. Stereological studies of the intermetallic particle distributions in the basemetal and the welds revealed that there is a direct relation between the banding of constituent particles (Al(Fe,Mn)Si or Al6(Fe,Mn) in AA5xxx) or equilibrium phases (Al2CuMg or Al2Cu in AA2xxx) along the rolling direction, and the formation of the onion rings. A clear onion rings structure was defined by three microstructural features, which are: 1) the existence of fine and coarse grain bands, 2) grain boundary precipitates coinciding with the fine grain bands, and 3) coarse particle segregation in the coarse grain bands. Upon etching, these microstructural heterogeneities form the unique onion rings etching profile. The formation of the onion rings was rather independent of the process parameters and alloy type, as long as the intermetallic particles are banded regardless of their types. However, alloys with high area fraction of intermetallic particles (~> 0.02) were found to produce more pronounced microstructural heterogeneities, which resulted in a stronger etching intensity. The microstructural heterogeneities within the AA5xxx welds, especially the interaction between the dislocations and the fine Al6(Fe,Mn) dispersoids, indicated that establishing a structure-property model requires the incorporation of the various strengthening factors. Stereological studies of the grain size and intermetallic particle distributions in the TMAZ indicated that the hardness is a combination of various microstructural factors, with grain-boundary strengthening as the main factor, with additional contributions by Orowan strengthening by the Al6(Fe,Mn) particles in specific locations, as well as a minor contribution by solid solution strengthening which resulted from the dissolution of Mg2Si during welding. The high dislocation stored energy in the TMAZ, as measured by differential scanning calorimetry, was associated with the geometrically-necessary dislocations which resulted from the interaction with the intermetallic particles and grains, but do not contribute to the hardness.
机译:众所周知,搅拌摩擦焊(FSW)会导致复杂的微观结构发展,其特征尚无法解释,例如:洋葱环结构的形成。此外,已经提出了各种微观结构因素来控制Al-Mg AA5xxx焊缝的强度。贱金属微观结构参数(例如晶粒,金属间颗粒,储存的能量)对微观结构性能发展的影响尚未得到研究,这是本工作的主题。为了合理化微观结构和局部强度(硬度)的发展,特别是在热影响区(HAZ)内的发展,建立了一个简单而快速的3-D传热模型来预测与FSW相关的热场。该数值模型利用交替方向隐式方法基于材料的工艺参数,热物理和热机械特性来模拟瞬态热循环。使用实验扭矩和力数据,以及针对AA2xxx和AA5xxx焊缝的现场热电偶测量,对模型进行拟合,以测量薄板与背板之间的摩擦系数和接触电导率。模型预测与焊缝的显微组织和显微硬度的发展一致。 Gleeble热仿真表明,焊接过程中的加热速率会影响重结晶的起始温度,这可能会延迟或加速重结晶。在热机械影响区(TMAZ),研究了几种AA5xxx和AA2xxx焊缝的洋葱圈结构。在此之前,对通过直接冷却和连续铸造制备的贱金属板进行了彻底的微观结构研究,以建立贱金属中的微观结构异质性对洋葱环形成和微观结构发展的影响。对基础金属和焊缝中金属间颗粒分布的立体研究表明,组成颗粒(AA5xxx中的Al(Fe,Mn)Si或Al6(Fe,Mn))的带化或平衡相(Al2CuMg或沿着轧制方向在AA2xxx中加入Al2Cu,并形成洋葱环。清晰的洋葱圈结构由三个微观结构特征定义,它们是:1)细晶粒带和粗晶粒带的存在; 2)与细晶粒带一致的晶界沉淀; 3)粗晶粒带中的粗大颗粒偏析。蚀刻后,这些微结构异质性形成了独特的洋葱圈蚀刻轮廓。洋葱圈的形成与工艺参数和合金类型无关,只要金属间化合物颗粒带状而不论其类型如何即可。然而,发现具有高金属间化合物颗粒分数(〜> 0.02)的合金会产生更明显的微观结构异质性,从而导致更强的蚀刻强度。 AA5xxx焊缝内的微观结构异质性,尤其是位错与细小的Al6(Fe,Mn)弥散体之间的相互作用,表明建立结构性能模型需要纳入各种强化因素。对TMAZ中晶粒尺寸和金属间颗粒分布的立体研究表明,硬度是各种微观结构因素的组合,其中晶界强化是主要因素,而Al6(Fe,Mn)颗粒通过Orowan强化产生了额外的贡献在特定位置,以及固溶强化的一小部分贡献,这是由于焊接过程中Mg2Si的溶解所致。通过差示扫描量热法测量,TMAZ中高位错存储的能量与几何上必要的位错有关,该位错是由于与金属间颗粒和晶粒相互作用而产生的,但对硬度没有贡献。

著录项

  • 作者

    Attallah Moataz;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号