首页> 外文OA文献 >A new adaptive multiscale finite element method with applications to high contrast interface problems
【2h】

A new adaptive multiscale finite element method with applications to high contrast interface problems

机译:一种适用于高对比度界面问题的自适应多尺度有限元方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis we show that the finite element error for the high contrast elliptic interface problem is independent of the contrast in the material coefficient under certain assumptions. The error estimate is proved using a particularly technical proof with construction of a specific function from the finite dimensional space of piecewise linear functions. We review the multiscale finite element method of Chu, Graham and Hou to give clearer insight. We present some generalisations to extend their work on a priori contrast independent local boundary conditions, which are then used to find multiscale basis functions by solving a set of local problems. We make use of their regularity result to prove a new relative error estimate for both the standard finte element method and the multiscale finite element method that is completely coefficient independent. The analytical results we explore in this thesis require a complicated construction. To avoid this we present an adaptive multiscale finite element method as an enhancement to the adaptive local-global method of Durlofsky, Efendiev and Ginting. We show numerically that this adaptive method converges optimally as if the coefficient were smooth even in the presence of singularities as well as in the case of a realisation of a random field. The novel application of this thesis is where the adaptive multiscale finite element method has been applied to the linear elasticity problem arising from the structural optimisation process in mechanical engineering. We show that a much smoother sensitivity profile is achieved along the edges of a structure with the adaptive method and no additional heuristic smoothing techniques are needed. We finally show that the new adaptive method can be efficiently implemented in parallel and the processing time scales well as the number of processors increases. The biggest advantage of the multiscale method is that the basis functions can be repeatedly used for additional problems with the same high contrast material coefficient.
机译:在本文中,我们证明了在某些假设下,高对比度椭圆界面问题的有限元误差与材料系数的对比度无关。使用特别的技术证明,通过分段线性函数的有限维空间构造特定函数,可以证明误差估计。我们回顾了Chu,Graham和Hou的多尺度有限元方法,以提供更清晰的见识。我们提出了一些概括,以在先验对比独立的局部边界条件下扩展其工作,然后通过解决一组局部问题将其用于查找多尺度基函数。我们利用它们的正则性结果证明了标准finte元素方法和完全与系数无关的多尺度有限元方法的新的相对误差估计。我们在本文中探讨的分析结果需要复杂的构造。为避免这种情况,我们提出了一种自适应多尺度有限元方法,作为对Durlofsky,Efendiev和Ginting的自适应局部全局方法的增强。我们从数值上表明,即使在存在奇异性以及实现随机场的情况下,该自适应方法也能最佳收敛,就好像系数是平滑的一样。本文的新颖应用是将自适应多尺度有限元方法应用于机械工程中结构优化过程引起的线性弹性问题。我们表明,采用自适应方法可以沿着结构的边缘实现更加平滑的灵敏度曲线,并且不需要其他启发式平滑技术。最后,我们证明了新的自适应方法可以有效地并行实现,并且随着处理器数量的增加,处理时间也随之延长。多尺度方法的最大优点是,在具有相同的高对比度材料系数的情况下,基函数可以重复用于其他问题。

著录项

  • 作者

    Millward Raymond;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号