首页> 外文OA文献 >Modelling and solution methods for portfolio optimisation
【2h】

Modelling and solution methods for portfolio optimisation

机译:投资组合优化的建模和解决方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis modelling and solution methods for portfolio optimisation are presented. The investigations reported in this thesis extend the Markowitz mean-variance model to the domain of quadratic mixed integer programming (QMIP) models which are 'NP-hard' discrete optimisation problems. In addition to the modelling extensions a number of challenging aspects of solution algorithms are considered. The relative performances of sparse simplex (SSX) as well as the interior point method (IPM) are studied in detail. In particular, the roles of 'warmstart' and dual simplex are highlighted as applied to the construction of the efficient frontier which requires processing a family of problems; that is, the portfolio planning model stated in a parametric form. The method of solving QMIP models using the branch and bound algorithm is first developed; this is followed up by heuristics which improve the performance of the (discrete) solution algorithm. Some properties of the efficient frontier with discrete constraints are considered and a method of computing the discrete efficient frontier (DEF) efficiently is proposed. The computational investigation considers the efficiency and effectiveness in respect of the scale up properties of the proposed algorithm. The extensions of the real world models and the proposed solution algorithms make contribution as new knowledge.
机译:本文提出了证券投资组合优化的建模和求解方法。本文报道的研究将Markowitz均方差模型扩展到二次混合整数规划(QMIP)模型的领域,该模型是“ NP难”离散优化问题。除了建模扩展之外,还考虑了解决方案算法的许多具有挑战性的方面。详细研究了稀疏单纯形(SSX)和内点法(IPM)的相对性能。尤其强调了“ warmstart”和双重单纯形的作用,它们被用于构建需要处理一系列问题的有效边界。也就是说,以参数形式表示的投资组合计划模型。首先提出了使用分支定界算法求解QMIP模型的方法。接下来是启发式算法,可以提高(离散)求解算法的性能。考虑了具有离散约束的有效边界的一些性质,并提出了一种有效计算离散有效边界(DEF)的方法。计算研究考虑了所提出算法的按比例放大性质的效率和有效性。现实世界模型的扩展和提出的解决方案算法作为新知识做出了贡献。

著录项

  • 作者

    Mitra G; Guertler Marion;

  • 作者单位
  • 年度 2004
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号