首页> 外文OA文献 >Modelling and solution methods for stochastic optimisation
【2h】

Modelling and solution methods for stochastic optimisation

机译:随机优化的建模和求解方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis we consider two research problems, namely, (i) language constructs for modelling stochastic programming (SP) problems and (ii) solution methods for processing instances of different classes of SP problems. We first describe a new design of an SP modelling system which provides greater extensibility and reuse. We implement this enhanced system and develop solver connections. We also investigate in detail the following important classes of SP problems: singlestage SP with risk constraints, two-stage linear and stochastic integer programming problems. We report improvements to solution methods for single-stage problems with second-order stochastic dominance constraints and two-stage SP problems. In both cases we use the level method as a regularisation mechanism. We also develop novel heuristic methods for stochastic integer programming based on variable neighbourhood search. We describe an algorithmic framework for implementing decomposition methods such as the L-shaped method within our SP solver system. Based on this framework we implement a number of established solution algorithms as well as a new regularisation method for stochastic linear programming. We compare the performance of these methods and their scale-up properties on an extensive set of benchmark problems. We also implement several solution methods for stochastic integer programming and report a computational study comparing their performance. The three solution methods, (a) processing of a single-stage problem with second-order stochastic dominance constraints, (b) regularisation by the level method for two-stage SP and (c) method for solving integer SP problems, are novel approaches and each of these makes a contribution to knowledge.
机译:在本文中,我们考虑了两个研究问题,即(i)建模随机编程(SP)问题的语言构造和(ii)处理不同类SP问题实例的解决方法。我们首先描述SP建模系统的新设计,该设计可提供更大的可扩展性和重用性。我们实施此增强的系统并开发求解器连接。我们还将详细研究以下重要的SP问题类别:具有风险约束的单阶段SP,两阶段线性和随机整数规划问题。我们报告了具有二阶随机优势约束和两阶段SP问题的单阶段问题的解决方法的改进。在这两种情况下,我们都将级别方法用作正则化机制。我们还为基于变量邻域搜索的随机整数编程开发了新颖的启发式方法。我们描述了在我们的SP求解器系统中实现分解方法(例如L形方法)的算法框架。在此框架的基础上,我们实现了许多已建立的求解算法以及用于随机线性规划的新正则化方法。我们在大量基准问题上比较了这些方法的性能及其放大特性。我们还为随机整数编程实现了几种解决方法,并报告了一项计算研究,比较了它们的性能。三种解决方法是新颖的方法(a)处理具有二阶随机优势约束的单阶段问题,(b)通过两阶段SP的水平方法进行正则化和(c)解决整数SP问题的方法这些都为知识做出了贡献。

著录项

  • 作者

    Mitra G; Zverovich Victor;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号