首页> 外文OA文献 >Matching of internal combustion engine characteristics for continuously variable transmissions
【2h】

Matching of internal combustion engine characteristics for continuously variable transmissions

机译:用于无级变速器的内燃机特性的匹配

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work proposes to match the engine characteristics to the requirements of the Continuously Variable Transmission [CVT] powertrain. The normal process is to pair the transmission to the engine and modify its calibration without considering the full potential to modify the engine. On the one hand continuously variable transmissions offer the possibility to operate the engine closer to its best efficiency. They benefit from the high versatility of the effective speed ratio between the wheel and the engine to match a driver requested power. On the other hand, this concept demands slightly different qualities from the gasoline or diesel engine. For instance, a torque margin is necessary in most cases to allow for engine speed controllability and transients often involve speed and torque together. The necessity for an appropriate engine matching approach to the CVT powertrain is justified in this thesis and supported by a survey of the current engineering trends with particular emphasis on CVT prospects. The trends towards a more integrated powertrain control system are highlighted, as well as the requirements on the engine behaviour itself. Two separate research axes are taken to investigate low Brake Specific Fuel Consumption [BSFC] in the low speed region and torque transient respectively for a large V8 gasoline engine and a turbocharged diesel V6 engine. This work is based on suitable simulation environments established for both engines in the powertrain. The modelling exercises are aimed at supplying appropriate models that can be validated against experimental data. The simulation platforms developed then allow the investigation of CVT powertrain biased engine characteristics. The V8 engine model in particular benefited from engine and vehicle dynamometer data to validate the model behaviour and the accuracy of the prediction. It benefited from the parallel work conducted on the Electrically Assisted Infinitely Variable Transmission [EASIVT] project in Cranfield University. The EASIVT vehicle is a parallel mild hybrid aimed at demonstrating the combined fuel economy benefits of a CVT technology and hybridisation. From the CVT powertrain requirements for fuel economy, BSFC operation can be further promoted in the low speed region if Noise Vibration and Harshness [NVH] counter-measures are developed. A study of the combustion torque oscillations at the crankshaft led to the elaboration of an Active Vibration Control [AVC] strategy for the hybrid Integrated Motor Generator [IMG]. Successful implementation of the strategy in both simulation and in-vehicle helped quantify the benefits and short comings of engine operation for best fuel economy. The development in parallel of the hybrid control functions for torque assist and regenerative braking made it possible to implement the low speed AVC in the vehicle without a driveability penalty. The V6 TDI model yielded a realistic and representative simulation for the transient torque response improvement research to be undertaken. For that purpose, the model was tuned against full-load data and the air path control sub-systems were designed and calibrated similarly to a real application. The model was able to highlight the turbocharger lag issue associated with a large combined speed and torque transient inevitable in the fuel economy biased CVT powertrain. This study proposes a Manifold Air Injection [MAI] system in the intake of the engine to help breathing when the VGT operating conditions cannot be shifted rapidly enough for a manoeuvre. The system design constraints were analysed and a suitable strategy was elaborated and calibrated. A sensitivity analysis was also conducted to demonstrate the influence of the MAI design and control variables on the engine performance in the CVT powertrain In conclusion, the benefits of the engine characteristic matching were highlighted in both cases. A review of the work achieved is available in the last chapter, including prospects for further improvements and investigations. The ideal engine characteristics for gasoline and diesel engine technologies integrated in a CVT powertrain are derived from the experience gathered in the research and the results obtained from the tests in low speed operation and transient torque control respectively for the gasoline and the diesel engines. The engine characteristics can be altered toward a better match with a CVT by the use of specific hardware and control strategy. This work recommends that a direct injected, variable valve actuated gasoline engine provides the ideal starting point for low fuel consumption powertrain. When integrated within a mild hybrid CVT powertrain, the full benefits are obtained with the use of low speed operation and AVC. If no electrical machine is available to torque assist the engine, then existing supercharging concepts for a downsized engine can be applied. Diesel engines can also be downsized because of their high torque density. Increased turbocharging boost levels allow steady state torque levels to be maintained in the downsizing process. The CVT powertrain can optimise the fuel consumption and emission levels by appropriate selection of the engine steady state operating points. The torque response lag then becomes critical for the CVT to control the engine speed. This can be improved by the use of Manifold air Injection to assist the turbocharger.
机译:这项工作建议使发动机特性与无级变速器(CVT)动力总成的要求相匹配。正常过程是将变速箱与发动机配对并修改其校准,而无需考虑改装发动机的全部潜力。一方面,无级变速器提供了使发动机更接近其最佳效率运行的可能性。它们得益于车轮和发动机之间有效速比的高通用性,以匹配驾驶员要求的功率。另一方面,该概念要求与汽油或柴油发动机略有不同的质量。例如,在大多数情况下,扭矩裕度是必需的,以实现发动机速度的可控制性,瞬变通常涉及速度和扭矩。本文证明了对CVT动力总成采用合适的发动机匹配方法的必要性,并得到了对当前工程趋势的调查的支持,其中特别强调了CVT的前景。重点介绍了朝着更加集成的动力总成控制系统发展的趋势,以及对发动机性能本身的要求。分别使用两个研究轴来研究大型V8汽油发动机和涡轮增压柴油V6发动机在低速区域的低制动比油耗[BSFC]和扭矩瞬变。这项工作基于为动力总成中的两个发动机建立的合适的仿真环境。建模练习旨在提供可以针对实验数据进行验证的适当模型。然后,开发的仿真平台可用于研究CVT动力总成偏置的发动机特性。 V8发动机模型特别受益于发动机和车辆测功机数据,以验证模型行为和预测的准确性。它得益于克兰菲尔德大学在电动辅助无级变速器[EASIVT]项目上进行的并行工作。 EASIVT车辆是并行的轻度混合动力车,旨在证明CVT技术和混合动力在燃油经济性方面的综合优势。根据CVT动力总成对燃油经济性的要求,如果制定了噪声振动和严酷性[NVH]对策,则可以在低速区域进一步促进BSFC的运行。对曲轴上的燃烧扭矩振荡的研究导致制定了混合动力集成电动发电机[IMG]的主动振动控制[AVC]策略。在仿真和车载中成功实施该策略有助于量化发动机运行的好处和不足,以实现最佳燃油经济性。用于扭矩辅助和再生制动的混合控制功能的并行开发使在车辆中实施低速AVC成为可能,而不会降低驾驶性能。 V6 TDI模型为要进行的瞬态转矩响应改进研究提供了现实且具有代表性的仿真。为此,该模型针对满载数据进行了调整,并且气路控制子系统的设计和校准与实际应用类似。该模型能够突出显示在燃油经济性偏心CVT动力总成中不可避免地会产生大的组合速度和扭矩瞬变的涡轮增压器滞后问题。这项研究提出了一种在发动机进气口中的歧管空气喷射(MAI)系统,以在VGT操作条件不能足够快地进行机动转换的情况下帮助呼吸。分析了系统设计约束,并制定了合适的策略并进行了校准。还进行了敏感性分析,以证明MAI设计和控制变量对CVT动力总成中发动机性能的影响。总之,两种情况下都突出了发动机特性匹配的好处。在上一章中对已完成的工作进行了回顾,包括进一步改进和研究的前景。 CVT动力总成中集成的汽油和柴油发动机技术的理想发动机特性来自于研究中积累的经验以及分别针对汽油和柴油发动机的低速运行和瞬态转矩控制的测试结果。通过使用特定的硬件和控制策略,可以更改发动机特性,使其与CVT更好地匹配。这项工作建议直接喷射,可变气门致动汽油发动机为低油耗动力总成提供理想的起点。当集成到轻度混合动力CVT动力总成中时,使用低速操作和AVC可获得全部好处。如果没有可用的电机来提供扭矩辅助发动机,则可以应用现有的小型发动机增压概念。柴油发动机还可以由于其高扭矩密度而小型化。涡轮增压助力水平的提高允许在缩小尺寸过程中保持稳态扭矩水平。 CVT动力总成可通过适当选择发动机稳态工作点来优化燃油消耗和排放水平。扭矩响应滞后对于CVT控制发动机转速变得至关重要。这可以通过使用歧管空​​气喷射来辅助涡轮增压器来改善。

著录项

  • 作者

    Vaughan N D; Bonnet Baptiste;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号