首页> 外文OA文献 >Matching of Internal Combustion Engine Characteristics for Continuously Variable Transmissions
【2h】

Matching of Internal Combustion Engine Characteristics for Continuously Variable Transmissions

机译:匹配内燃机特性的无级变速器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This work proposes to match the engine characteristics to the requirements ofthe Continuously Variable Transmission [CVT] powertrain. The normal process is topair the transmission to the engine and modify its calibration without considering thefull potential to modify the engine. On the one hand continuously variable transmissionsoffer the possibility to operate the engine closer to its best efficiency. They benefit fromthe high versatility of the effective speed ratio between the wheel and the engine tomatch a driver requested power. On the other hand, this concept demands slightlydifferent qualities from the gasoline or diesel engine. For instance, a torque margin isnecessary in most cases to allow for engine speed controllability and transients ofteninvolve speed and torque together. The necessity for an appropriate engine matchingapproach to the CVT powertrain is justified in this thesis and supported by a survey ofthe current engineering trends with particular emphasis on CVT prospects. The trendstowards a more integrated powertrain control system are highlighted, as well as therequirements on the engine behaviour itself.Two separate research axes are taken to investigate low Brake Specific FuelConsumption [BSFC] in the low speed region and torque transient respectively for alarge V8 gasoline engine and a turbocharged diesel V6 engine. This work is based onsuitable simulation environments established for both engines in the powertrain. Themodelling exercises are aimed at supplying appropriate models that can be validatedagainst experimental data. The simulation platforms developed then allow theinvestigation of CVT powertrain biased engine characteristics.The V8 engine model in particular benefited from engine and vehicledynamometer data to validate the model behaviour and the accuracy of the prediction. It benefited from the parallel work conducted on the Electrically Assisted InfinitelyVariable Transmission [EASIVT] project in Cranfield University. The EASIVT vehicleis a parallel mild hybrid aimed at demonstrating the combined fuel economy benefits ofa CVT technology and hybridisation. From the CVT powertrain requirements for fueleconomy, BSFC operation can be further promoted in the low speed region if NoiseVibration and Harshness [NVH] counter-measures are developed. A study of thecombustion torque oscillations at the crankshaft led to the elaboration of an ActiveVibration Control [AVC] strategy for the hybrid Integrated Motor Generator [IMG].Successful implementation of the strategy in both simulation and in-vehicle helpedquantify the benefits and short comings of engine operation for best fuel economy. Thedevelopment in parallel of the hybrid control functions for torque assist and regenerativebraking made it possible to implement the low speed AVC in the vehicle without adriveability penalty.The V6 TDI model yielded a realistic and representative simulation for thetransient torque response improvement research to be undertaken. For that purpose, themodel was tuned against full-load data and the air path control sub-systems weredesigned and calibrated similarly to a real application. The model was able to highlightthe turbocharger lag issue associated with a large combined speed and torque transientinevitable in the fuel economy biased CVT powertrain. This study proposes a ManifoldAir Injection [MAI] system in the intake of the engine to help breathing when the VGToperating conditions cannot be shifted rapidly enough for a manoeuvre. The systemdesign constraints were analysed and a suitable strategy was elaborated and calibrated.A sensitivity analysis was also conducted to demonstrate the influence of the MAIdesign and control variables on the engine performance in the CVT powertrainIn conclusion, the benefits of the engine characteristic matching werehighlighted in both cases. A review of the work achieved is available in the last chapter,including prospects for further improvements and investigations. The ideal enginecharacteristics for gasoline and diesel engine technologies integrated in a CVTpowertrain are derived from the experience gathered in the research and the resultsobtained from the tests in low speed operation and transient torque control respectively for the gasoline and the diesel engines. The engine characteristics can be altered towarda better match with a CVT by the use of specific hardware and control strategy.This work recommends that a direct injected, variable valve actuated gasolineengine provides the ideal starting point for low fuel consumption powertrain. Whenintegrated within a mild hybrid CVT powertrain, the full benefits are obtained with theuse of low speed operation and AVC. If no electrical machine is available to torqueassist the engine, then existing supercharging concepts for a downsized engine can beapplied.Diesel engines can also be downsized because of their high torque density.Increased turbocharging boost levels allow steady state torque levels to be maintained inthe downsizing process. The CVT powertrain can optimise the fuel consumption andemission levels by appropriate selection of the engine steady state operating points. Thetorque response lag then becomes critical for the CVT to control the engine speed. Thiscan be improved by the use of Manifold air Injection to assist the turbocharger.
机译:这项工作建议使发动机特性与无级变速器(CVT)动力总成的要求相匹配。正常过程是将变速箱配对至发动机并修改其校准,而不考虑完全有可能修改发动机。一方面,无级变速器提供了使发动机更接近其最佳效率运行的可能性。它们得益于车轮和发动机之间有效速比的高通用性,以匹配驾驶员要求的动力。另一方面,该概念要求汽油或柴油发动机的质量略有不同。例如,在大多数情况下,扭矩裕度是必需的,以允许发动机转速可控,并且瞬变通常会同时涉及速度和扭矩。本文证明了对CVT动力总成进行适当发动机匹配的必要性,并得到了对当前工程趋势的调查的支持,其中特别强调了CVT的前景。着重指出了朝着更加集成的动力总成控制系统发展的趋势,以及对发动机性能的要求。分别采用两个研究方向来研究大型V8汽油发动机在低速区域的低制动耗油量[BSFC]和扭矩瞬变。和涡轮增压柴油V6发动机。这项工作基于为动力总成中的两个发动机建立的合适的仿真环境。建模练习旨在提供可以针对实验数据进行验证的适当模型。然后开发的仿真平台允许研究CVT动力总成偏向发动机的特性。特别是V8发动机模型得益于发动机和车辆测功机数据,以验证模型行为和预测的准确性。它得益于克兰菲尔德大学在电动辅助无级变速传动[EASIVT]项目上进行的并行工作。 EASIVT车辆是并行的轻度混合动力车,旨在证明CVT技术和混合动力在燃油经济性方面的综合优势。根据CVT动力总成对燃油经济性的要求,如果制定了噪声振动和严酷性[NVH]的对策,则可以在低速区域进一步促进BSFC的运行。对曲轴处燃烧扭矩振荡的研究导致制定了混合动力集成电动发电机[IMG]的主动振动控制[AVC]策略。在仿真和车载两种策略中均成功实施该策略有助于量化其优势和短处发动机运行可实现最佳燃油经济性。扭矩辅助和再生制动混合控制功能的并行开发使在车辆中实施低速AVC成为可能,而不会造成驾驶性能损失。V6TDI模型为进行瞬态扭矩响应改进研究提供了现实且具有代表性的仿真。为此,该模型针对满载数据进行了调整,并且类似于实际应用,对风路控制子系统进行了设计和校准。该模型能够突出显示与燃油经济性偏心CVT动力总成中不可避免的大的组合速度和扭矩相关的涡轮增压器滞后问题。这项研究提出了一种在发动机进气口中的歧管空气喷射(MAI)系统,以在VGT操作条件不能足够快地进行操纵移动的情况下帮助呼吸。分析了系统设计的约束条件,并制定了合适的策略并进行了校准。还进行了敏感性分析,以证明MAI设计和控制变量对CVT动力总成发动机性能的影响总而言之,两者都突出了发动机特性匹配的好处案件。在上一章中对已完成的工作进行了回顾,包括进一步改进和研究的前景。 CVT动力总成中集成的汽油和柴油发动机技术的理想发动机特性源于研究中积累的经验,以及分别从汽油和柴油发动机的低速运行和瞬态转矩控制测试中获得的结果。可以通过使用特定的硬件和控制策略来更改发动机特性,使其更适合CVT。这项工作建议,直接喷射,可变气门驱动的汽油发动机为低油耗动力总成提供理想的起点。当集成到轻度混合动力CVT动力总成中时,通过使用低速操作和AVC可获得全部好处。如果没有可用的电机来辅助发动机则可以采用现有的小型发动机增压概念。由于其高扭矩密度,还可以减小柴油发动机的尺寸。增加的涡轮增压水平可以在缩小尺寸过程中保持稳态扭矩水平。 CVT动力总成可以通过适当选择发动机稳态工作点来优化燃油消耗和排放水平。扭矩响应滞后对于CVT控制发动机转速变得至关重要。这可以通过使用歧管空​​气注入来辅助涡轮增压器来改善。

著录项

  • 作者

    Bonnet Baptiste;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号