首页> 外文OA文献 >Nanocomposite systems based on polysaccharides and organic/inorganic nanostructures for biomedical applications
【2h】

Nanocomposite systems based on polysaccharides and organic/inorganic nanostructures for biomedical applications

机译:基于多糖和有机/无机纳米结构的纳米复合系统,用于生物医学应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This PhD thesis deals with the development of bioactive polysaccharide-based biomaterials for bone tissue and neural tissue engineering. Alginate was chosen for its gel forming properties; hyaluronic acid and chitlac (a lactose-modified chitosan) were chosen for their bioactive properties. The properties of these polysaccharides have been implemented by introducing gelatin, functionalized Carbon Nanotubes (f-CNTs) and silver nanoparticles (nAg).In the first part of the work, the dispersibility and aggregation tendency of f-CNTs have been characterized by means of Low Field Nuclear Magnetic Resonance (LF-NMR). It was also possible to correlate the f-CNTs concentration to the proton transversal relaxation rate of water. Alginate/f-CNTs solutions and hydrogels have been analyzed by LF-NMR, rheology and uniaxial compression tests; these investigations showed that the f-CNTs are able to affect nanocomposite properties depending on their concentration and functionalization.In the second part of the work, the preparation of a bioactive (bridging) implant for the treatment of Spinal Cord Injury is described. Neuronal cells and mesoangioblasts (MABs) engineered for the production of neurotrophines have been cultured and co-cultured on polysaccharide-coated glass substrates in order to evaluate the biological effects of chitlac. Chitlac-coated surfaces where shown to possess higher surface energies if compared to chitosan-coated ones and enable the formation of wider neural networks with improved electrical activity. The co-cultures confirmed the higher bioactivity of chitlac/alginate substrates and the biological role of neurotrophines. Porous scaffolds of alginate/chitlac have been prepared; these scaffolds where shown to be stable in simulated body fluid for over a month. The mechanical properties of rehydrated scaffolds where proved to be similar to those of neural tissue. Biological properties of chitlac substrates enriched with f-CNTs are currently under investigation.In the third part of the work, tridimensional scaffolds and injectable fillers were developed for the treatment of non-critical bone defects. Porous scaffolds with different pore morphologies have been prepared by freeze casting of alginate/HAp hydrogels. Isotropic porosity was obtained by freezing the constructs in a cryostat, while anisotropic porosity was obtained by the Ice Segregation Induced Self Assembly process. Physical, mechanical and biological analyses revealed that the differences in pore morphology determine differences in the mechanical properties of the scaffolds. Biocompatible f-CNTs have been used to implement the isotropic scaffolds; the biological analyses showed that the presence of f-CNTs does not affect scaffold properties.Osteoconductive/antimicrobial injectable bone fillers, based on alginate/HAp microbeads dispersed in polysaccharide mixtures, have been developed. Microbeads were enriched with nAg synthesized in chitlac. Antimicrobial assays proved the antibacterial properties of the microbeads towards bacteria in suspension and on pre-formed biofilms. Biological assays showed the biocompatibility of the microbeads and their ability to sustain osteoblast proliferation. The fillers prepared by dispersing microbeads in polysaccharide mixtures were shown to be easily injectable through surgical syringes. In vivo studies on a rabbit model of non-critical bone defect pointed out the biocompatibility and the osteoconductivity of the composite materials. Further studies are ongoing in order to evaluate the possibility to further implement the bioactive properties of the microbeads by addiction of gelatin.
机译:本博士论文致力于用于骨组织和神经组织工程的基于生物活性多糖的生物材料的开发。选择海藻酸盐是因为其具有凝胶形成特性。选择透明质酸和Chitlac(乳糖修饰的壳聚糖)是因为它们具有生物活性。通过引入明胶,功能化的碳纳米管(f-CNT)和银纳米颗粒(nAg)来实现这些多糖的特性。在第一部分的工作中,通过以下方法表征了f-CNT的分散性和聚集趋势:低场核磁共振(LF-NMR)。也可以将f-CNTs的浓度与水的质子横向弛豫速率相关联。海藻酸盐/ f-CNTs溶液和水凝胶已通过LF-NMR,流变学和单轴压缩测试进行了分析;这些研究表明,f-CNTs能够根据其浓度和功能性影响纳米复合材料的性能。在工作的第二部分,描述了用于治疗脊髓损伤的生物活性(桥接)植入物的制备。为了评估Chitlac的生物学作用,已对用于制造神经营养蛋白的神经元细胞和中成血管细胞(MAB)进行了培养,并在多糖涂层的玻璃基板上进行了共培养。与壳聚糖包被的表面相比,壳聚糖包被的表面具有更高的表面能,并且能够形成具有改善的电活动的更广泛的神经网络。共培养证实了壳聚糖/藻酸盐底物的较高生物活性和神经营养蛋白的生物学作用。已经制备了藻酸盐/紫丁香的多孔支架。这些支架在模拟体液中稳定超过一个月。事实证明,再水化的支架的机械性能与神经组织的机械性能相似。目前正在研究富含f-CNTs的chitlac底物的生物学特性。在第三部分中,开发了三维支架和可注射填充剂以治疗非关键性骨缺损。通过藻酸盐/ HAp水凝胶的冻铸已经制备了具有不同孔形态的多孔支架。通过在低温恒温器中冷冻构建体获得各向同性孔隙度,而通过冰偏析诱导自组装过程获得各向同性孔隙度。物理,机械和生物学分析表明,孔形态的差异决定了支架机械性能的差异。具有生物相容性的f-CNT已被用于实现各向同性支架。生物学分析表明,f-CNTs的存在不会影响支架的性能。已经开发出了基于分散在多糖混合物中的藻酸盐/ HAp微珠的骨传导/抗菌可注射骨填充剂。微珠富含在chitlac中合成的nAg。抗菌检测证明了微珠对悬浮液和预先形成的生物膜上细菌的抗菌特性。生物学测定显示了微珠的生物相容性及其维持成骨细胞增殖的能力。通过将微珠分散在多糖混合物中制备的填充物显示出易于通过手术注射器注射。兔非关键性骨缺损模型的体内研究指出了复合材料的生物相容性和骨电导率。为了评估通过明胶成瘾进一步实现微珠的生物活性特性的可能性,正在进行进一步的研究。

著录项

  • 作者

    Porrelli Davide;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号