首页> 外文OA文献 >Application of spiking neural networks and the bees algorithm to control chart pattern recognition
【2h】

Application of spiking neural networks and the bees algorithm to control chart pattern recognition

机译:尖峰神经网络和蜜蜂算法在图表模式识别控制中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Statistical process control (SPC) is a method for improving the quality of products. Control charting plays a most important role in SPC. SPC control charts arc used for monitoring and detecting unnatural process behaviour. Unnatural patterns in control charts indicate unnatural causes for variations. Control chart pattern recognition is therefore important in SPC. Past research shows that although certain types of charts, such as the CUSUM chart, might have powerful detection ability, they lack robustness and do not function automatically. In recent years, neural network techniques have been applied to automatic pattern recognition. Spiking Neural Networks (SNNs) belong to the third generation of artificial neural networks, with spiking neurons as processing elements. In SNNs, time is an important feature for information representation and processing. This thesis proposes the application of SNN techniques to control chart pattern recognition. It is designed to present an analysis of the existing learning algorithms of SNN for pattern recognition and to explain how and why spiking neurons have more computational power in comparison to the previous generation of neural networks. This thesis focuses on the architecture and the learning procedure of the network. Four new learning algorithms arc presented with their specific architecture: Spiking Learning Vector Quantisation (S-LVQ), Enhanced-Spiking Learning Vector Quantisation (NS-LVQ), S-LVQ with Bees and NS-LVQ with Bees. The latter two algorithms employ a new intelligent swarm-based optimisation called the Bees Algorithm to optimise the LVQ pattern recognition networks. Overall, the aim of the research is to develop a simple architecture for the proposed network as well as to develop a network that is efficient for application to control chart pattern recognition. Experiments show that the proposed architecture and the learning procedure give high pattern recognition accuracies.
机译:统计过程控制(SPC)是一种提高产品质量的方法。控制图在SPC中扮演着最重要的角色。 SPC控制图用于监视和检测不自然的过程行为。控制图中的不自然模式表示出现变化的不自然原因。因此,控制图模式识别在SPC中很重要。过去的研究表明,尽管某些类型的图表(例如CUSUM图表)可能具有强大的检测能力,但它们缺乏鲁棒性并且无法自动运行。近年来,神经网络技术已应用于自动模式识别。尖峰神经网络(SNN)属于第三代人工神经网络,以尖峰神经元为处理元件。在SNN中,时间是信息表示和处理的重要功能。本文提出了SNN技术在控制图表模式识别中的应用。它旨在提供对现有SNN学习算法进行模式识别的分析,并解释与上一代神经网络相比,尖峰神经元如何以及为什么具有更大的计算能力。本文主要研究网络的体系结构和学习过程。四种新的学习算法具有其特定的体系结构:尖峰学习矢量量化(S-LVQ),增强型尖峰学习矢量量化(NS-LVQ),S-LVQ与Bees和NS-LVQ与Bees。后两种算法采用了一种新的基于智能群的优化方法,即Bees算法,以优化LVQ模式识别网络。总体而言,研究的目的是为所提出的网络开发一种简单的体系结构,并开发一种可有效应用于控制图表模式识别的网络。实验表明,所提出的体系结构和学习过程具有较高的模式识别精度。

著录项

  • 作者

    Sahran Shahnorbanun;

  • 作者单位
  • 年度 2007
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号