首页> 外文OA文献 >Implicit large eddy simulation for unsteady multi-component compressible turbulent flows
【2h】

Implicit large eddy simulation for unsteady multi-component compressible turbulent flows

机译:非定常多分量可压缩湍流的隐式大涡模拟

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Numerical methods for the simulation of shock-induced turbulent mixing have been investigated, focussing on Implicit Large Eddy Simulation. Shock-induced turbulent mixing is of particular importance for many astrophysical phenomena, inertial confinement fusion, and mixing in supersonic combustion. These disciplines are particularly reliant on numerical simulation, as the extreme nature of the flow in question makes gathering accurate experimental data difficult or impossible. A detailed quantitative study of homogeneous decaying turbulence demonstrates that existing state of the art methods represent the growth of turbulent structures and the decay of turbulent kinetic energy to a reasonable degree of accuracy. However, a key observation is that the numerical methods are too dissipative at high wavenumbers (short wavelengths relative to the grid spacing). A theoretical analysis of the dissipation of kinetic energy in low Mach number flows shows that the leading order dissipation rate for Godunov-type schemes is proportional to the speed of sound and the velocity jump across the cell interface squared. This shows that the dissipation of Godunov-type schemes becomes large for low Mach flow features, hence impeding the development of fluid instabilities, and causing overly dissipative turbulent kinetic energy spectra. It is shown that this leading order term can be removed by locally modifying the reconstruction of the velocity components. As the modification is local, it allows the accurate simulation of mixed compressible/incompressible flows without changing the formulation of the governing equations. In principle, the modification is applicable to any finite volume compressible method which includes a reconstruction stage. Extensive numerical tests show great improvements in performance at low Mach compared to the standard scheme, significantly improving turbulent kinetic energy spectra, and giving the correct Mach squared scaling of pressure and density variations down to Mach 10−4. The proposed modification does not significantly affect the shock capturing ability of the numerical scheme. The modified numerical method is validated through simulations of compressible, deep, open cavity flow where excellent results are gained with minimal modelling effort. Simulations of single and multimode Richtmyer-Meshkov instability show that the modification gives equivalent results to the standard scheme at twice the grid resolution in each direction. This is equivalent to sixteen times decrease in computational time for a given quality of results. Finally, simulations of a shock-induced turbulent mixing experiment show excellent qualitative agreement with available experimental data.
机译:重点研究了内隐大涡模拟,研究了数值模拟激流湍流混合的方法。冲击引起的湍流混合对于许多天体物理学现象,惯性约束聚变以及超音速燃烧中的混合特别重要。这些学科特别依赖于数值模拟,因为所涉及的流动的极端性质使得很难或不可能收集准确的实验数据。对均质衰减湍流的详细定量研究表明,现有技术水平的现有方法以合理的准确度表示了湍流结构的增长和湍动能的衰减。但是,一个关键的观察结果是,数值方法在高波数(相对于网格间距的短波长)下过于耗散。对低马赫数流中动能耗散的理论分析表明,Godunov型方案的前导耗散率与声速成正比,并且穿过单元界面的速度跳跃成平方。这表明对于低马赫流动特性,Godunov型方案的耗散变得很大,从而阻碍了流体不稳定性的发展,并导致了湍流动能谱的过度耗散。结果表明,可以通过局部修改速度分量的重构来删除该前导项。由于修改是局部的,因此可以在不更改控制方程式的情况下精确模拟可压缩/不可压缩混合流动。原则上,该修改适用于包括重构阶段的任何有限体积可压缩方法。大量的数值测试表明,与标准方案相比,在低马赫数下的性能有了很大的提高,显着改善了湍动能谱,并给出了正确的马赫平方比例缩放比例,压力和密度变化低至10-4马赫。提出的修改不会显着影响数值方案的冲击捕获能力。改进的数值方法通过可压缩,深,开腔流动的仿真得到了验证,其中以最小的建模工作即可获得出色的结果。对单模式和多模式Richtmyer-Meshkov不稳定性的仿真表明,该修改在每个方向上以两倍的网格分辨率为标准方案提供了等效的结果。对于给定的结果质量,这相当于计算时间减少了16倍。最后,对激振引起的湍流混合实验的仿真表明,其与现有实验数据的定性极好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号