首页> 外文OA文献 >Convolved Gaussian process priors for multivariate regression with applications to dynamical systems
【2h】

Convolved Gaussian process priors for multivariate regression with applications to dynamical systems

机译:用于多元回归的卷积高斯过程先验与动态系统的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis we address the problem of modeling correlated outputs using Gaussian process priors. Applications of modeling correlated outputs include the joint prediction of pollutant metals in geostatistics and multitask learning in machine learning. Defining a Gaussian process prior for correlated outputs translates into specifying a suitable covariance function that captures dependencies between the different output variables. Classical models for obtaining such a covariance function include the linear model of coregionalization and process convolutions. We propose a general framework for developing multiple output covariance functions by performing convolutions between smoothing kernels particular to each output and covariance functions that are common to all outputs. Both the linear model of coregionalization and the process convolutions turn out to be special cases of this framework. Practical aspects of the proposed methodology are studied in this thesis. They involve the use of domain-specific knowledge for defining relevant smoothing kernels, efficient approximations for reducing computational complexity and a novel method for establishing a general class of nonstationary covariances with applications in robotics and motion capture data.Reprints of the publications that appear at the end of this document, report case studies and experimental results in sensor networks, geostatistics and motion capture data that illustrate the performance of the different methods proposed.
机译:在本文中,我们解决了使用高斯过程先验对相关输出建模的问题。相关输出建模的应用包括地统计学中污染物金属的联合预测以及机器学习中的多任务学习。预先为相关输出定义高斯过程,可以转化为指定一个合适的协方差函数,该函数可以捕获不同输出变量之间的依存关系。获得这种协方差函数的经典模型包括共区域化和过程卷积的线性模型。通过为每个输出特有的平滑内核和所有输出共有的协方差函数之间进行卷积,我们提出了用于开发多个输出协方差函数的通用框架。共区域化的线性模型和过程卷积都证明是该框架的特殊情况。本文研究了所提出方法的实际方面。它们涉及使用领域特定的知识来定义相关的平滑内核,有效的近似值以减少计算复杂性以及一种新颖的方法来建立一般类别的非平稳协方差及其在机器人技术和运动捕捉数据中的应用。在本文档的最后,报告了传感器网络,地统计学和运动捕获数据中的案例研究和实验结果,这些结果说明了所提出的不同方法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号