首页> 外文OA文献 >Online adaptive fuzzy neural network automotive engine control
【2h】

Online adaptive fuzzy neural network automotive engine control

机译:在线自适应模糊神经网络汽车发动机控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Automotive manufacturers are investing in research and development for hybridization and more modern advanced combustion strategies. These new powertrain systems can offer the higher efficiency required to meet future emission legislation, but come at the cost of significantly increased complexity. The addition of new systems to modernise an engine increases the degrees of freedom of the control problem and the number of control variables. Advanced combustion strategies also display interlinked behaviour between control variables. This type of behaviour requires a more orchestrated multi-input multi-output control approach. Model based control is a common solution, but accurate control models can be difficult to achieve and calibrate due to the nonlinear dynamics of the engines. The modelling problem becomes worse when some advanced combustion systems display nonlinear dynamics that can change with time. Any fixed model control system would suffer from increasing model/system mismatch. Direct feedback would help reduce a degree or error from model/system mismatch, but feedback methods are often limited by cost and are generally indirect and slow response. This research addresses these problems with the development of a mobile ionisation sensor and an online adaptive control architecture for multi-input multi-output engine control. The mobile ionisation system offers a cheap, fast response, direct in-cylinder feedback for combustion control. Feedback from 30 averaged cycles can be related to combustion timing with variance as small as 0.275 crank angle degrees. The control architecture combines neural networks and fuzzy logic for the control and reduced modelling effort for complex nonlinear systems. The combined control architecture allows continuous online control adaption for calibration against model/plant mismatch and time varying dynamics. In simulation, set point tracking could be maintained for combustion timing to 4 CAD and AFR to 4, for significant dynamics shifts in plant dynamics during a transient drive cycle.
机译:汽车制造商正在投资研发混合动力技术和更先进的先进燃烧策略。这些新的动力总成系统可以提供满足未来排放法规所需的更高效率,但会以大大增加复杂性为代价。为使发动机现代化而增加的新系统增加了控制问题的自由度和控制变量的数量。先进的燃烧策略还显示了控制变量之间的相互联系的行为。这种类型的行为需要更加有序的多输入多输出控制方法。基于模型的控制是一种常见的解决方案,但是由于发动机的非线性动力学,可能难以实现和校准精确的控制模型。当某些先进的燃烧系统显示出随时间变化的非线性动力学时,建模问题将变得更加严重。任何固定的模型控制系统都会遭受模型/系统不匹配的增加。直接反馈将有助于减少模型/系统不匹配的程度或误差,但是反馈方法通常受成本限制,并且通常是间接且响应缓慢。这项研究通过开发移动电离传感器和用于多输入多输出发动机控制的在线自适应控制架构来解决这些问题。移动电离系统提供廉价,快速响应的直接缸内反馈以进行燃烧控制。来自30个平均循环的反馈可能与燃烧正时相关,方差小至0.275曲轴角度。该控制体系结构将神经网络和模糊逻辑相结合,以进行控制,并减少了复杂非线性系统的建模工作。组合的控制体系结构允许连续的在线控制适应,以针对模型/工厂不匹配和时变动态进行校准。在仿真中,可以将设定点跟踪保持不变,以使燃烧正时保持在4 CAD,AFR保持在4,以在瞬态驱动循环中实现工厂动态的显着动态变化。

著录项

  • 作者

    James Keith;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号