首页> 外文OA文献 >Light scattering during infrared spectroscopic measurements of biomedical samples
【2h】

Light scattering during infrared spectroscopic measurements of biomedical samples

机译:在生物医学样品的红外光谱测量期间的光散射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Infrared (IR) spectroscopy has shown potential to quickly and non-destructively measure the chemical signatures of biomedical samples such as single biological cells, and tissue from biopsy. The size of a single cell (diameter ~10-50 µm) are of a similar magnitude to the mid-IR wavelengths of light (~1-10 µm) giving rise to Mie-type scattering. The result of this scattering is that chemical information is significantly distorted in the IR spectrum.Distortions in biomedical IR spectra are often observed as a broad oscillating baseline on which the absorbance spectrum is superimposed. A spectral feature commonly observed is the sharp decrease in intensity at approximately 1700 cm-1, next to the Amide I band (~1655 cm-1), which pre-2009 was called the 'dispersion artefact'. The first contributing factor towards the 'dispersion artefact' investigated was the reflection signal arising from the air to sample interface entering the collection optics during transflection experiments. This was theoretically modelled, and then experimentally verified. It was shown that IR mapping could be done using reflection mode, yielding information from the optically dense nucleus which previously caused extinction of light in transmission mode.The most important contribution to the spectral distortions was due to resonant Mie scattering (RMieS) which occurs when the scattering particle is strongly absorbing such as biomedical samples. RMieS was shown to explain both the baselines in IR spectra, and the 'dispersion artefact' and was validated using a model system of poly(methyl methacrylate) (PMMA) of varying sizes from 5 to 15 µm. Theoretical simulations and experimental data had an excellent match thus proving the theory proposed. With an understanding of the physics/mathematics of the spectral distortions, a correction algorithm was written, the RMieS extended multiplicative signal correction (RMieS-EMSC). This algorithm modelled the measured spectrum as superposition of a first guess (the reference spectrum) which was of a similar biochemical composition to the pure absorbance spectrum of the sample, and a scattering curve. The scattering curve was estimated as the linear combination of a database of a large number of scattering curves covering a range of feasible physical parameters. Simulated and measured data verified that the RMieS-EMSC increased IR spectral quality.
机译:红外(IR)光谱显示了潜力,可以快速,无损地测量生物医学样品(例如单个生物细胞和活检组织)的化学特征。单个单元的大小(直径〜10-50 µm)与光的中红外波长(〜1-10 µm)具有相似的大小,从而产生Mie型散射。这种散射的结果是化学信息在IR光谱中明显失真。生物医学IR光谱中的失真通常被观察为宽的振荡基线,吸收光谱叠加在该基线上。通常观察到的光谱特征是强度大约在1700 cm-1处急剧下降,仅次于酰胺I波段(〜1655 cm-1),2009年前被称为“色散伪像”。影响“色散伪像”的第一个因素是在反射实验期间,空气到样品界面进入收集光学器件的反射信号。理论上对此进行了建模,然后进行了实验验证。结果表明,IR映射可以使用反射模式进行,从先前在透射模式下导致光消失的光密核获得信息。对光谱畸变最重要的贡献是由于共振Mie散射(RMieS)的发生。散射粒子会强烈吸收生物医学样品。已显示RMieS可以解释IR光谱中的基线和“色散伪影”,并已使用尺寸从5至15 µm的聚甲基丙烯酸甲酯(PMMA)的模型系统进行了验证。理论仿真和实验数据非常匹配,从而证明了所提出的理论。了解了频谱失真的物理/数学原理后,编写了一种校正算法,即RMieS扩展乘法信号校正(RMieS-EMSC)。该算法将测量光谱建模为第一猜测(参考光谱)的叠加,该第一猜测的生化组成与样品的纯吸收光谱相似,并且具有散射曲线。散射曲线被估计为覆盖一系列可行物理参数的大量散射曲线数据库的线性组合。仿真和测量数据证明,RMieS-EMSC可以提高红外光谱质量。

著录项

  • 作者

    Gardner Peter; Bassan Paul;

  • 作者单位
  • 年度 2011
  • 总页数
  • 原文格式 PDF
  • 正文语种 English
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号