首页> 外文OA文献 >New Plane-Sweep Algorithms for Distance-Based Join Queries in Spatial Databases
【2h】

New Plane-Sweep Algorithms for Distance-Based Join Queries in Spatial Databases

机译:空间数据库中基于距离的连接查询的新平面扫描算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that may address such queries (mapping, urban planning, transportation planning, resource management, etc.). The most representative and studied DJQs are the K Closest Pairs Query (KCPQ) and εDistance Join Query (εDJQ). These spatial queries involve two spatial data sets and a distance function to measure the degree of closeness, along with a given number of pairs in the final result (K) or a distance threshold (ε). In this paper, we propose four new plane-sweep-based algorithms for KCPQs and their extensions for εDJQs in the context of spatial databases, without the use of an index for any of the two disk-resident data sets (since, building and using indexes is not always in favor of processing performance). They employ a combination of plane-sweep algorithms and space partitioning techniques to join the data sets. Finally, we present results of an extensive experimental study, that compares the efficiency and effectiveness of the proposed algorithms for KCPQs and εDJQs. This performance study, conducted on medium and big spatial data sets (real and synthetic) validates that the proposed plane-sweep-based algorithms are very promising in terms of both efficient and effective measures, when neither inputs are indexed. Moreover, the best of the new algorithms is experimentally compared to the best algorithm that is based on the R-tree (a widely accepted access method), for KCPQs and εDJQs, using the same data sets. This comparison shows that the new algorithms outperform R-tree based algorithms, in most cases.
机译:在空间数据库中,基于距离的联接查询(DJQ)的高效有效处理非常重要,这是因为可以解决此类查询的应用范围很广(映射,城市规划,交通规划,资源管理等)。最有代表性和研究最多的DJQ是K最近配对查询(KCPQ)和εDistanceJoin查询(εDJQ)。这些空间查询涉及两个空间数据集和一个距离函数,以测量紧密程度,以及最终结果(K)或距离阈值(ε)中的给定对数。在本文中,我们针对空间数据库中的KCPQ及其εDJQ的扩展提出了四种新的基于平面扫描的算法,而没有为两个磁盘驻留数据集的任何一个使用索引(因为建立,使用和使用索引并不总是有利于处理性能)。他们结合了平面扫描算法和空间分区技术来结合数据集。最后,我们提出了一项广泛的实验研究结果,比较了针对KCPQs和εDJQs提出的算法的效率和有效性。在中型和大型空间数据集(真实的和合成的)上进行的这项性能研究证实,在没有输入任何索引的情况下,就有效措施而言,基于平面扫描的算法是非常有前途的。此外,对于KCPQ和εDJQ,使用相同的数据集,将新算法中的最佳算法与基于R树(广泛接受的访问方法)的最佳算法进行了实验比较。这种比较表明,在大多数情况下,新算法的性能优于基于R树的算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号