首页> 外文OA文献 >Application of machine learning to short-term equity return prediction
【2h】

Application of machine learning to short-term equity return prediction

机译:机器学习在短期股权收益预测中的应用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cooper showed how a filter method could be used to predict equity returns for the next week by using information about returns and volume for the two previous weeks. Cooper's method may be regarded as a crude method of Machine Learning. Over the last 20 years Machine Learning has been successfully applied to the modeling of large data sets, often containing a lot of noise, in many different fields. When applying the technique it is important to fit it to the specific problem under consideration. We have designed and applied to Cooper's problem a practical new method of Machine Learning, appropriate to the problem, that is based on a modification of the well-known kernel regression method. We call it the Prototype Kernel Regression method (PKR). In both the period 1978-1993 studied by Cooper, and the period 1994-2004, the PKR method leads to a clear profit improvement compared to Cooper's approach. In all of 48 different cases studied, the period pre-cost average return is larger for the PKR method than Cooper's method, on average 37% higher, and that margin would increase as costs were taken into account. Our method aims to minimize the danger of data snooping, and it could plausibly have been applied in 1994 or earlier. There may be a lesson here for proponents of the Efficient Market Hypothesis in the form that states that profitable prediction of equity returns is impossible except by chance. It is not enough for them to show that the profits from an anomaly-based trading scheme disappear after costs. The proponents should also consider what would have been plausible applications of more sophisticated Machine Learning techniques before dismissing evidence against the EMH.
机译:Cooper展示了如何使用过滤方法通过使用前两周的收益和交易量信息来预测下周的股本收益。库珀的方法可以看作是机器学习的粗略方法。在过去的20年中,机器学习已成功应用于许多领域的大型数据集建模,这些数据集通常包含很多噪声。在应用该技术时,使其适应所考虑的特定问题很重要。我们已经设计了一种适用于该问题的实用的机器学习新方法,并将其应用于Cooper问题,该方法基于对已知核回归方法的修改。我们称其为原型内核回归方法(PKR)。在Cooper研究的1978-1993年和1994-2004年期间,与Cooper的方法相比,PKR方法都带来了明显的利润改善。在所研究的所有48个不同案例中,PKR方法的期间成本前平均回报都比Cooper方法大,平均高出37%,而且考虑到成本,利润率将增加。我们的方法旨在最大程度地减少数据监听的危险,并且有可能在1994年或更早的时候应用了它。对于“有效市场假说”的支持者,这里可能会有一个教训,形式是说,除非偶然,否则不可能实现盈利的股票收益预测。他们还不足以证明基于异常交易计划的利润在扣除成本后就消失了。支持者在驳回针对EMH的证据之前,还应考虑更复杂的机器学习技术的合理应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号