首页> 外文OA文献 >Environmental/economic power dispatch using multiobjective evolutionary algorithms
【2h】

Environmental/economic power dispatch using multiobjective evolutionary algorithms

机译:使用多目标进化算法进行环境/经济功率调度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a new multiobjective evolutionary algorithm for environmental/economic power dispatch (EED) problem. The EED problem is formulated as a nonlinear constrained multiobjective optimization problem. A new strength Pareto evolutionary algorithm (SPEA) based approach is proposed to handle the EED as a true multiobjective optimization problem with competing and noncommensurable objectives. The proposed approach employs a diversity-preserving mechanism to overcome the premature convergence and search bias problems. A hierarchical clustering algorithm is also imposed to provide the decision maker with a representative and manageable Pareto-optimal set. Moreover, fuzzy set theory is employed to extract the best compromise nondominated solution. Several optimization runs of the proposed approach have been carried out on a standard test system. The results demonstrate the capabilities of the proposed approach to generate well-distributed Pareto-optimal solutions of the multiobjective EED problem in one single run. The comparison with the classical techniques demonstrates the superiority of the proposed approach and confirms its potential to solve the multiobjective EED problem. In addition, the extension of the proposed approach to include more objectives is a straightforward process.
机译:本文提出了一种新的多目标进化算法,用于环境/经济动力调度(EED)问题。 EED问题被公式化为非线性约束的多目标优化问题。提出了一种新的基于强度帕累托进化算法(SPEA)的方法来将EED作为具有竞争和不可比目标的真正多目标优化问题来处理。所提出的方法采用多样性保持机制来克服过早的收敛和搜索偏差问题。还采用了层次聚类算法,以为决策者提供代表性且易于管理的帕累托最优集。此外,采用模糊集理论来提取最佳折衷非支配解。在标准测试系统上已对提出的方法进行了几次优化。结果表明,所提出的方法能够一次生成多目标EED问题的分布均匀的帕累托最优解。与经典技术的比较证明了该方法的优越性,并证实了其解决多目标EED问题的潜力。此外,将提议的方法扩展为包含更多目标是一个简单的过程。

著录项

  • 作者

    Abido M.A.;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号