首页> 外文OA文献 >Environmental/economic power dispatch using multiobjective evolutionary algorithms: a comparative study
【2h】

Environmental/economic power dispatch using multiobjective evolutionary algorithms: a comparative study

机译:使用多目标进化算法的环境/经济权力调度:比较研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A comparative study of newly developed Pareto-based multiobjective evolutionary algorithms (MOEA) applied to a nonlinear power system multiobjective optimization problem is presented in this paper. Specifically, Niched Pareto genetic algorithm (NPGA), nondominated sorting genetic algorithm (NSGA), and strength Pareto evolutionary algorithm (SPEA) have been developed and successfully applied to environmental/economic electric power dispatch (EED) problem. These multiobjective evolutionary algorithms have been individually examined and applied to the standard IEEE 30-bus test system. A feasibility check procedure has been developed and superimposed on MOEA to restrict the search to the feasible region of the problem space. The results of MOEA have been compared to those reported in the literature. The comparison shows the superiority of MOEA to the traditional multiobjective optimization techniques and confirms their potential to handle power system multiobjective optimization problems.
机译:本文对用于非线性电力系统多目标优化问题的最新开发的基于Pareto的多目标进化算法(MOEA)进行了比较研究。具体而言,已开发了Niched Pareto遗传算法(NPGA),非支配排序遗传算法(NSGA)和强度Pareto进化算法(SPEA),并将其成功地应用于环境/经济电力调度(EED)问题。这些多目标进化算法已经过单独检查,并已应用于标准IEEE 30总线测试系统。已经开发了可行性检查程序并将其叠加在MOEA上,以将搜索限制在问题空间的可行区域内。将MOEA的结果与文献报道的结果进行了比较。比较结果表明,MOEA优于传统的多目标优化技术,并证实了它们在解决电力系统多目标优化问题方面的潜力。

著录项

  • 作者

    Abido M.A.;

  • 作者单位
  • 年度 2003
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号