首页> 外文OA文献 >Grid-based Model for Recovery of Lost Connectivity in Wireless Sensor and Actor Network
【2h】

Grid-based Model for Recovery of Lost Connectivity in Wireless Sensor and Actor Network

机译:基于网格的无线传感器和演员网络丢失连接恢复模型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Wireless Sensor and Actor Networks (WSAN) are basically a collection of actors and sensors collaborating via a wireless medium to perform designated tasks. Maintaining inter-actor connectivity is critical to a WSAN, as failure at one point may result in communication loss amongst nodes or in a network disjoint. To recover from an actor node failure, optimal re-localization and coordination techniques should be in place. However, existing recovery schemes suffer from high degrees of actor node relocation overhead as well as network overhead. In this paper, we introduce a Grid-based Mathematical Model for efficient Actor Recovery by Determining Forwarding Capacity (GMMFC). The proposed model aims to provide effective monitoring and actor failure detection mechanism supported by an efficient actor recovery algorithm. GMMFC presents an innovative concept in actor node recovery while proposing improvements in WSAN QoS performance using RSSI Message information. The proposed solution is compared with state-of-the-art algorithms. The experimental results manifest better performance over delay, throughput, packet delivery ratio, energy consumption as well as for messages exchanged between sensor and actor nodes. Thus, the proposed model demonstrates improvements in QoS parameters.
机译:无线传感器和参与者网络(WSAN)基本上是通过无线介质协作以执行指定任务的参与者和传感器的集合。保持参与者之间的连接性对于WSAN至关重要,因为某一点的故障可能会导致节点之间的通信丢失或网络断开。为了从参与者节点故障中恢复过来,应该采用最佳的重新定位和协调技术。但是,现有的恢复方案会遭受高度的参与者节点重定位开销以及网络开销。在本文中,我们通过确定转发能力(GMMFC)引入了基于网格的数学模型,以实现有效的Actor恢复。所提出的模型旨在提供有效的参与者恢复算法来支持有效的监视和参与者故障检测机制。 GMMFC在参与者节点恢复方面提出了创新的概念,同时提出了使用RSSI消息信息改进WSAN QoS性能的建议。将所提出的解决方案与最新算法进行了比较。实验结果表明,在延迟,吞吐量,数据包传递率,能量消耗以及传感器和参与者节点之间交换的消息方面,性能更好。因此,提出的模型证明了QoS参数的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号